Skip to main content
Log in

Genetic diversity assessment of Ethiopian tetraploid wheat landraces and improved durum wheat varieties using microsatellites and markers linked with stem rust resistance

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A set of 77 markers was used to describe the genetic diversity in a group of 58 tetraploid wheat accessions. Analysis was performed using 31 neutral SSR markers, 31 SSR/STS markers linked with reported major stem rust resistance genes and 15 SSR markers linked with QTL identified for resistance to Ethiopian stem rust races of Puccinia graminis Pers. f. sp. tritici Eriks. et E. Henn. (Pgt),including Ug99. The material consisted of 32 (Triticum durum s.l. incl. T. aethiopicum Jakubz., Triticum turgidum and Triticum polonicum) landraces and 22 registered T. durum varieties from Ethiopia that were released 1966–2009 and four T. durum varieties from ICARDA. A total of 720 alleles were detected. Considering the three marker sets, the mean number of alleles was higher for major stem rust resistance gene linked markers (9.9) followed by neutral SSR markers (9.2) and markers linked with QTL for stem rust resistance (8.5). Dendrograms derived from UPGMA analysis grouped the accessions into two major clusters. The principal component analysis based on the combination of the three marker sets formed three groups. The 1st group was composed of all the improved varieties, whereas the 2nd and the 3rd group contained the landraces. All the landraces that formed the 3rd group were susceptible to Ethiopian stem rust races of Pgt including Ug99. The information on the extent of the genetic diversity of the improved varieties obtained in this investigation will be helpful for developing appropriate breeding strategies to broadening the genetic base of durum wheat varieties in further breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BARC:

Beltsville Agriculture Research Centre

CI:

Coefficient of infection

CIMMYT:

International Maize and Wheat Improvement Center

EST:

Expressed sequence tag

GS:

Genetic similarity

GWM:

Gatersleben wheat microsatellite

ICARDA:

International Center for Agricultural Research in the Dry Areas

LR:

Landrace

NTSYS:

Numerical taxonomy and multivariate analysis system

PCoA:

Principal coordinate analysis

PCR:

Polymerase chain reaction

Pgt:

Puccinia graminis f. sp. tritici

PIC:

Polymorphic information content

QTL:

Quantitative trait loci

RFLP:

Restricted fragment length polymorphism

RIL:

Recombinant inbred line

SAMPL:

Selective amplification of microsatellite polymorphic loci

SR:

Stem rust severity

SSAP:

Sequence specific amplification polymorphism

SSR:

Simple sequence repeat

STS:

Sequence tagged site

UPGMA:

Unweighted pair group method with arithmetic average

WMC:

Wheat microsatellite consortium

WMS:

Wheat microsatellites

References

  • Admassu B, Embet F, Zerihun K (2004) Physiological races and virulence diversity of Puccinia graminis f. sp. tritici on wheat in Ethiopia. In: 12th regional wheat workshop for eastern, central, and Southern Africa. Nakuru, Kenya, 22–26 November 2004, pp 145–150

  • Alamerew S, Chebotar S, Huang X, Röder M, Börner A (2004) Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genet Resour Crop Evol 51:559–567

    Article  CAS  Google Scholar 

  • Altinas S, Toklu F, Kafkas S, Kilian B, Brandolini A, Özkan H (2008) Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers. Plant Breeding 127:9–14

    Google Scholar 

  • Asins MJ, Carbonnel EA (1989) Distribution of genetic variability in a durum wheat world collection. Theor Appl Genet 77:79–86

    Article  Google Scholar 

  • Badebo A (2002) Breeding bread wheat with multiple disease resistance and high yield for the Ethiopian highlands: broadening the genetic basis of yellow rust and tan spot resistance. PhD Thesis, Georg-August University, Goettingen, Germany

  • Bechere E, Belay G, Mitiku D, Merker A (1996) Phenotypic diversity of tetraploid wheat landraces from Northern and North-Central regions of Ethiopia. Hereditas 124:165–172

    Article  Google Scholar 

  • Bekele E (1984) Analysis of regional pattern of phenotypic diversity in the Ethiopian tetraploid and hexaploid wheats. Hereditas 100:131–154

    Article  Google Scholar 

  • Belay G, Tesemma T, Becker HC, Merker A (1993) Variation and interrelationships of agronomic traits in Ethiopian tetraploid wheat landraces. Euphytica 71:181–188

    Article  Google Scholar 

  • Ben Amer IM, Börner A, Röder MS (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers. Genet Resour Crop Evol 48:579–585

    Article  Google Scholar 

  • Beteselassie N, Fininsa C, Badebo A (2007) Sources of resistance to stem rust (Puccinia graminis f. sp. tritici) in Ethiopian tetraploid wheat accessions. Genet Resour Crop Evol 54:337–343

    Article  Google Scholar 

  • Brown AHD, Munday J (1982) Population genetic structure and optimal sampling of landraces of barley from Iran. Genetica 58:85–96

    Article  Google Scholar 

  • Das BK, Saini A, Bhagwat SG, Jawali N (2006) Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat. Plant Breed 125:544–549

    Article  CAS  Google Scholar 

  • Devos KM, Bryan GJ, Collins AJ, Gale MD (1995) Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90:247–252

    Article  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dograr N, Akin-Yalin S, Akkaya MS (2000) Discriminating durum wheat cultivars using highly polymorphic simple sequence repeat DNA markers. Plant Breed 119:360–362

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Eivazi AR, Naghavi MR, Hajheidari M, Pirseyedi SM, Ghaffari MR, Mohammadi SA, Majidi I, Salekdeh GH, Mardi M (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using quality traits, amplified fragment length polymorphisms, simple sequence repeats and proteome analysis. Ann Appl Biol 152:81–91

    Article  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor App Genet 104:399–407

    Article  CAS  Google Scholar 

  • FAO special report (2005) FAO/WFP crop and food supply assessment mission to Ethiopia. Rome: FAO, 28 January 2005

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats Triticum spp. (Graminae-Triticinae). In: Simmonds SJ (eds) Evolution of crop plants. Longman Scientific & Technical, Harlow, pp 184–192

  • Figliuolo G, Mariarosaria M, Ivana G (2007) Temporal variation of diversity in Italian durum wheat germplasm. Genet Resour Crop Evol 54:615–626

    Article  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds.) Genomics assisted crop improvement: vol 2: genomics applications in crops, pp 1–24

  • Ganeva G, Korzun V, Landjeva S, Popova Z, Christov NK (2010) Genetic diversity assessment of Bulgarian durum wheat (Triticum durum Desf.) landraces and modern cultivars using microsatellite markers. Genet Resour Crop Evol 57:273–285

    Article  CAS  Google Scholar 

  • Haile JK, Nachit MM, Hammer K, Badebo A, Röder MS (2012) QTL mapping of resistance to race Ug99 of Puccinia graminis f. sp. tritici in durum wheat (Triticum durum Desf.). Mol Breed. doi:10.1007/s11032-012-9734-7

  • Hammer K, Filatenko AA, Korzun V (2000) Microsatellite markers: a new tool for distinguishing diploid wheat species. Genet Resour Crop Evol 47:497–505

    Article  Google Scholar 

  • Harlan JR (1969) Ethiopia: a centre of diversity. Econ Bot 23:309–314

    Article  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  PubMed  CAS  Google Scholar 

  • Ijaz S, Khan IA (2009) Molecular characterization of wheat germplasm using microsatellite markers. Genet Mol Res 8:809–815

    Article  PubMed  CAS  Google Scholar 

  • Iqbal N, Tabasum A, Sayed H, Hameed A (2009) Evaluation of genetic diversity among bread wheat varieties and landraces of Pakistan by SSR markers. Cereal Research Communications 37:489–498

    Article  CAS  Google Scholar 

  • Kebebew F, Tsehaye Y, McNeilly T (2001) Diversity of durum wheat (Triticum durum Desf.) at in situ conservation sites in North Shewa and Bale, Ethiopia. J Agric Sci 136:383–392

    Article  Google Scholar 

  • Khanjari SA, Hammer K, Buerkert A, Röder MS (2007) Molecular diversity of Omani wheat revealed by microsatellites: I. Tetraploid landraces. Genet Resour Crop Evol 54:1291–1300

    Article  Google Scholar 

  • Khlestkina EK, Röder MS, Efremova TT, Börner A, Shumny VK (2004) The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breed 123:122–127

    Article  CAS  Google Scholar 

  • Landjeva S, Korzun V, Ganeva G (2006) Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) cultivars during the period 1925–2003 using microsatellites. Genet Resour Crop Evol 53:1605–1614

    Article  CAS  Google Scholar 

  • Leppik EE (1970) Gene centers of plants as a source of disease resistance. Ann Rev Phytopathol 8:323–344

    Article  Google Scholar 

  • Letta T, Gezu G, Kudryavtsev A, Chiapparino E, D’Egidio MG (2005) Genetic diversity of Ethiopian durum wheat varieties based on gliadin alleles. J Genet Breed 59:277–284

    CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Smith CM, Gill BS, Tolmay V (2001) Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor Appl Genet 102:504–510

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797

    Article  PubMed  CAS  Google Scholar 

  • Mardi M, Naghavi MR, Pirseyedi SM, Kazemi Alamooti M, Rashidi Monfared S, Ahkami AH, Omidbakhsh MA, Alavi NS, Salehi Shanjani P, Katsiotis A (2011) Comparative assessment of SSAP, AFLP and SSR Markers for evaluation of genetic diversity of durum wheat (Triticum turgidum L. var. durum). J Agric Sci Tech 13:905–920

    Google Scholar 

  • Mekbib H, Haile-Mariam G (1990) Evaluation and utilization of Ethiopian wheat germplasm. In: Srivastava JP, Damania AB (eds) Wheat genetic resources: meeting diverse needs. ICARDA, Wiley, pp 179–185

    Google Scholar 

  • Messele T (2001) Multidisciplinary approach in estimating genetic diversity of Ethiopian tetraploid wheat (Triticum turgidum L.) landraces. PhD thesis, Wageningen University, The Netherlands

  • Perrino P, Porceddu E (1990) Wheat genetic resources in Ethiopia and the Mediterranean region. In: Srivastava JP, Damania AB (eds) Wheat genetic resources: meeting diverse ends. ICARDA, Wiley, pp 161–178

  • Peterson RF, Champbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res (C) 26:496–500

    Article  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Prashanth SR, Parani M, Mohanty BP, Talame V, Tuberosa R, Parida A (2002) Genetic diversity in cultivars and landraces of Oryza sativa subsp. Indica as revealed by AFLP markers. Genome 45:451–459

    Article  PubMed  CAS  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Phytopathology 84:203

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rohlf FJ (1993) Numerical taxonomy and multivariate analysis system. NTSYS-pc version 2.11Q. Applied Biostatistics Inc., New York

  • Salem KFM, El-Zanaty AM, Esmail RM (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World J Agric Sci 4:538–544

    Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. Perspect Agric Vet Sci Nutr Nat Resour 1:1–13

    CAS  Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor App Genet 104:350–357

    Article  CAS  Google Scholar 

  • Song ZP, Xu X, Wang B, Chen JK, Lu BR (2003) Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor Appl Genet 107:1492–1499

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Teklu Y, Hammer K, Huang XQ, Röder MS (2006) Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1115–1126

    Google Scholar 

  • Tesfaye T, Getachew B, Worede M (1991) Morphological diversity in tetraploid wheat landrace populations from the central highlands of Ethiopia. Hereditas 114:171–176

    Article  Google Scholar 

  • Tsegaye B, Berg T (2007) Genetic erosion of Ethiopian tetraploid wheat landraces in Eastern Shewa, Central Ethiopia. Genet Resour Crop Evol 54:715–726

    Article  Google Scholar 

  • Tsegaye S, Tesemma T, Belay G (1996) Relationships among tetraploid wheat (Triticum turgidum L.) landrace population revealed by isozyme markers and agronomic traits. Theor Appl Genet 93:600–605

    Article  CAS  Google Scholar 

  • Uddin MS, Boerner A (2008) Genetic diversity in hexaploid and tetraploid wheat genotypes using microsatellite markers. Plant Tissue Cult Biotech 18:65–73

    Google Scholar 

  • van Beuningen LT, Busch RH (1997) Genetic diversity among North American spring wheat cultivars: III. Cluster analysis based on quantitative morphological traits. Crop Sci 37:981–988

    Article  Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang HY, Wei YM, Yan ZH, Zheng YL (2007) EST-SSR DNA polymorphism in durum wheat (Triticum durum L.) collections. J Appl Genet 48:35–42

    Article  PubMed  CAS  Google Scholar 

  • Zarkti H, Hassen O, Abderraouf H, Sripada MU (2010) Detection of genetic diversity in Moroccan durum wheat accessions using agro-morphological traits and microsatellite markers. Afr J Agric Res 5:1837–1844

    Google Scholar 

Download references

Acknowledgments

We are grateful for Debre-Zeit Agricultural Research Center (DZARC), Ethiopia, for providing us the Ethiopian tetraploid wheat landraces and improved varieties. We are also thankful for the assistances provided by technical staff of the Gene and Genome Mapping unit of the Cytogenetics and Genome Analysis Department at Plant Genetics and Crop Plant Research (IPK) Gatersleben and DZARC. The first auther would like to thank German Academic Exchange Service (DAAD), Institute of IPK and Ethiopian Institute of Agricultural Research (EIAR) for financially supporting my study and research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jemanesh K. Haile.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haile, J.K., Hammer, K., Badebo, A. et al. Genetic diversity assessment of Ethiopian tetraploid wheat landraces and improved durum wheat varieties using microsatellites and markers linked with stem rust resistance. Genet Resour Crop Evol 60, 513–527 (2013). https://doi.org/10.1007/s10722-012-9855-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9855-1

Keywords

Navigation