Skip to main content
Log in

Cell-based and chemical assays of the ability to modulate the production of intracellular Reactive Oxygen Species of eleven Mediterranean plant species related to ethnobotanic traditions

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The aim of this study was to compare three tests for the evaluation of the antioxidant potential of eleven plant species traditionally used to cure or to enhance animal and/or human wellbeing. In addition to the ability to modulate the production of intracellular reactive oxygen species the effect of the treatment on cell viability was also considered. In the cell-based experiment DCF (2′,7′dichlorofluorescein diacetate) and in the chemical assays DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2′-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt), Pistacia lentiscus exhibited high antioxidant capacity, while Cistus creticus and Euphorbia characias were ineffective in cell-culture and displayed high activity in the chemical assays, and others (Malva sylvestris, Matricaria chamomilla, Urtica dioica) showed an opposite trend. Olea europaea (sylvestris and europaea) and Umbilicus rupestris displayed highest antioxidant efficacy in both HUVEC and HL-60 cells, and provided also appreciable activity in the chemical assays. The study gives evidence that herbal extracts may have similar antioxidant properties but different effects on cells. Therefore, it is important to combine analytical and biological testing methods in order to measure the antioxidant capacity of natural extracts. Results encourage to explore further the potential nutraceutical and functional properties of Mediterranean plant species related to ethno-botanic traditions for animal health care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ablise M, Mao XM, Kasim R (2011) Antioxidant activities of Uyghur medicinal tea in human HL-60 cell line and rat hepatic microsomes. J Med Plants Res 5:2677–2681

    CAS  Google Scholar 

  • Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75:199–212

    Article  CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial byproducts: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils—a graded response to membrane stimulation. J Immunol 130:1910–1917

    PubMed  CAS  Google Scholar 

  • Bullitta S, Piluzza G, Viegi L (2007) Plant resources used for traditional ethnoveterinary phytoterapy in Sardinia (Italy). Genet Resour Crop Evol 54:1447–1464

    Article  Google Scholar 

  • Carter WO, Narayanan PK, Robinson JP (1994) Intracellular hydrogen-peroxide and superoxide anion detection in endothelial-cells. J Leukocyte Biol 55:253–258

    PubMed  CAS  Google Scholar 

  • Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agr Food Chem 49:3420–3424

    Article  CAS  Google Scholar 

  • Conforti F, Sosa S, Marrelli M, Menichini F, Statti GA, Uzunov D, Tubaro A, Menichini F, Della Loggia R (2008) In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J Ethnopharmacol 116:144–151

    Article  PubMed  CAS  Google Scholar 

  • Eyries M, Collins T, Khachigian LM (2004) Modulation of growth factor gene expression in vascular cells by oxidative stress. Endothelium J Endoth 11:133–139

    Article  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  • Geronikaki AA, Gavalas AM (2006) Antioxidants and anti-inflammatory diseases: synthetic and natural antioxidants with anti-inflammatory activity. Comb Chem High Throughput Screen 9:425–442

    Article  PubMed  CAS  Google Scholar 

  • Giorgi A, Bombelli R, Luini A, Speranza G, Cosentino M, Lecchini S, Cocucci M (2009) Antioxidant and cytoprotective properties of infusions from leaves and inflorescences of Achillea collina Becker ex Rchb. Phytother Res 23:540–545

    Article  PubMed  Google Scholar 

  • Grice HP (1988) Enhanced tumour development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem Toxicol 26:717–723

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2008) Are polyphenols antioxidant or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112

    Article  PubMed  CAS  Google Scholar 

  • Hazra B, Biswas S, Mandal N (2008) Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement AlterMed 8:63

    Article  Google Scholar 

  • Jeremy JY, Shukla N, Muzaffar S, Handley A, Angelini GD (2004) Reactive oxygen species, vascular disease and cardiovascular surgery. Curr Vasc Pharmacol 2:229–236

    Article  PubMed  CAS  Google Scholar 

  • Juzyszyn Z, Czerny B, Pawlik A, Droździk M (2008) The Effect of Artichoke (Cynara scolymus L.) extract on ROS generation in HUVEC cells. Phytother Res 22:1159–1161

    Article  PubMed  CAS  Google Scholar 

  • Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51:6509–6515

    Article  PubMed  CAS  Google Scholar 

  • Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233

    Article  CAS  Google Scholar 

  • Lee JC, Lee KY, Kim J, Na CS, Jung NC, Chung GH, Jang YS (2004) Extract from Rhus verniciflua stokes is capable of inhibiting the growth of human lymphoma cells. Food Chem Toxicol 42:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • McGaw LJ, Eloff JN (2008) Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J Ethnopharmacol 119:559–574

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural Products as Sources of New Drugs over the Period 1981-2002. J Nat Prod 66:1022–1037

    Article  PubMed  CAS  Google Scholar 

  • Ohshima H, Yoshie Y, Auriol S, Gilbert I (1998) Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic Biol Med 25:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Piluzza G, Bullitta S (2010) The dynamics of phenolics concentration in some pasture species and implications for animal husbandry. J Sci Food Agric 90:1452–1459

    Article  PubMed  CAS  Google Scholar 

  • Piluzza G, Bullitta S (2011) Correlation between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm Biol 49(3):240–247

    Article  PubMed  CAS  Google Scholar 

  • Pokorný J (2007) Are natural antioxidants better-and safer-than synthetic antioxidants? Eur J Lipid Sci Technol 109:629–642

    Article  Google Scholar 

  • Prior RL, Wu XL, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agr Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  • Rao YK, Paiva LA, Souza MF, Campos AR, Ribeiro RA, Brito GA, Teixeira MJ, Silveira ER (2003) Ternatin, an anti-inflammatory flavonoid, inhibits thioglycolate-elicited rat peritoneal neutrophil accumulation and LPS-activated nitric oxide production in murine macrophages. Planta Med 69:851–853

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ (1996) Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans 24:790–795

    PubMed  CAS  Google Scholar 

  • Shen L, Ji HF, Zhang HY (2007) How to understand the dichotomy of antioxidants. Biochem Biophys Res Co 362:543–545

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Surveswaran S, Cai Y, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidant from 133 Indian medicinal plants. Food Chem 102:938–953

    Article  CAS  Google Scholar 

  • Tang SY, Halliwell B (2010) Medicinal plants and antioxidants: what do we learn from cell culture and Caenorhabditis elegans studies? Biochem Bioph Res Comm 394:1–5

    Article  CAS  Google Scholar 

  • Teufelhofer O, Weiss RM, Parzefall W, Schulte-Hermann R, Micksche M, Berger W, Elbling L (2003) Promyelocytic HL60 cells express NADPH oxidase and are excellent targets in a rapid spectrophotometric microplate assay for extracellular superoxide. Toxicol Sci 76(2):376–383

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Joseph J (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biol Med 27:612–616

    Article  CAS  Google Scholar 

  • Whichi HC (1986) Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem Toxicol 24:1127–1130

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Caterina Serra, sect. Virology, Dept. Biomedical Sciences, University of Sassari and Giovanna Masala, Sardinian Experimental Institute for Animal Prophylaxis (Istituto Zooprofilattico Sperimentale della Sardegna), Sassari, for providing cell-lines. Marina Pisano, ICB-CNR-Sassari, for providing the cell-culture facilities and Claudia Crosio at the Institute of Biochemistry, University of Sassari, for the use of the fluorescence microplate reader. M. Manunta was kindly supported by a CNR Short Term Mobility grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Piluzza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullitta, S., Piluzza, G. & Manunta, M.D.I. Cell-based and chemical assays of the ability to modulate the production of intracellular Reactive Oxygen Species of eleven Mediterranean plant species related to ethnobotanic traditions. Genet Resour Crop Evol 60, 403–412 (2013). https://doi.org/10.1007/s10722-012-9842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9842-6

Keywords

Navigation