Skip to main content

Advertisement

Log in

Glycome characterization of immunoglobulin G from buffalo (Bubalus bubalis) colostrum

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Immunoglobulin G (IgG) is a major glycoprotein in ruminant colostrum. First day buffalo colostrum protein was purified on Sephadex G-100 and its mass was determined by MALDI-TOF as 147.848 KDa. The PMF data of protein subunits revealed its homology to IgG, which was supported by the identification of peptide sequences LLIYGATSR and VYNEYLPAPIVR corresponding to light and heavy chains of IgG by CID MS/MS analysis. The N-glycan microheterogeneity was established based on chemoselective glycoblotting technique with the identification of high mannose, neutral complex/hybrid and sialylated complex/hybrid glycans. A complete structural assignment of 54 N-linked oligosaccharides were identified and the ratio of sialyl oligosaccharides was found to be higher compared to neutral saccharides. The fucosylation observed in more than 20 oligosaccharides, high mannose and trisialyl oligosaccharides were present in diminutive amount. The high non-fucosyl and sialyl oligosaccharides in buffalo colostrum IgG provide ample scope for its utilization in targeted therapies to elicit effective ADCC and anti-inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MALDI-TOF:

Matrix-assisted laser desorption/ionization-time of flight

LC-MS/MS:

Liquid chromatography–mass spectrometry

PNGase F:

Peptide -N-Glycosidase F

PHM:

1-propanesulfonic acid 2-hydroxyl-3-myristamido

DTT:

Dithiothreitol

IAA:

Iodoacetic acid CID, Collision induced dissociation

PMF:

Peptide mass fingerprinting

ADCC:

Antibody-dependent cellular cytotoxicity

CDC:

Complement-dependent cytotoxicity

References

  1. Pramod, G., Gill, H.S.: Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br. J. Nutr. 84, 69–74 (2000)

    Google Scholar 

  2. Aurelia, P., Cristian, C., Camelia, R., Vioara, M., Gheorghe, M.: The study of the main parameters quality of buffalo milk. Afr. J. Microbiol. Res. 10, 201–206 (2009)

    Google Scholar 

  3. Antonius, M.: In vivo antimicrobial and an-tiviral activity of components in bovine milk and colostrum involved in non-specific defence. Br. J. Nutr. 84, 127–134 (2000)

    Google Scholar 

  4. Uruakpa, O., Ismond, M.A.H., Akobundu, E.N.T.: Colostrum and its benefits: a review. Nutr. Res. 22, 755–767 (2002)

    Article  CAS  Google Scholar 

  5. Martinez-Ferez, A., Rudloff, S., Guadix, A., Cordula, A.H., Pohlentz, G., Boza, J.B., Guadix, E.M., Kunz, C.: Goat’s milk as a natural source of lactose-derived oligosaccharides: isolation by membrane technology. Int. Dairy J. 16, 173–181 (2006)

    Article  CAS  Google Scholar 

  6. Colarow, L., Turini, M., Tencherg, S., Berger, A.: Characterization and biological activity of gangliosides in buffalo milk. Biochim. Biophys. Acta 1631, 94–106 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Bulter, J.E.: Bovine immunoglobulins: an augmented review. Vet. Immunol. Immunopath. 4, 43–152 (1983)

    Article  Google Scholar 

  8. Dang, A.K., Kapila, S., Purohit, M., Singh, C.: Changes in colostrum of Murrah buffaloes after calving. Trop. Anim. Health. Pro. 41, 1213–1217 (2008)

    Article  Google Scholar 

  9. Kulkarni, B.A.: Immunoglobulins of the Indian buffalo. V. Changes in colostrum milk and neonatal calf serum immunoglobulins in early lactation. Indian J. Biochem. Biophys. 18, 28–31 (1981)

    CAS  PubMed  Google Scholar 

  10. Goodman, W.: Immunoglobulin structure and function. In: Stites, D.P., et al. (eds.) Basic and clinical Immunology, p. 27. Lang. Med. Pub., Los Altos, CA (1987)

  11. Arnold, N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Ann. Rev. Immunol. 25, 21–50 (2007)

    Article  CAS  Google Scholar 

  12. Zeitlin, L., Pettitt, J.J., Scully, C.C., Bohorova, N.N., Do, D.K., Pauly, M.M., Hiatt, A.A., Ngo, L.L., Steinkellner, H.H., Whaley, K.J.K., Olingerb, G.G.: Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl. Acad. Sci. 108, 20690–20694 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kai-Ting, S., Robert, M.A.: Antibody glycosylation and Inflammation. Antibodies 2, 392–414 (2013)

    Article  Google Scholar 

  14. Nimmerjahn, F., Ravetch, J.V.: Divergent Immunoglobulin G subclass activity through selective Fc receptor binding. Sci. 310, 1510–1512 (2005)

    Article  CAS  Google Scholar 

  15. Junttila, T.T., Parsons, K., Olsson, C., Lu, Y., Xin, Y., Theriault, J., Crocker, L., Pabonan, O., Baginski, T., Meng, G., Totpal, K., Kelley, R.F., Sliwkowski, M.X.: Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified. Breast Canc. Canc. Res. 70, 4481–4489 (2010)

    CAS  Google Scholar 

  16. Kaneko, Y., Nimmerjahn, F., Ravetch, J.V.: Anti-inflammatory activity of Immunoglobulin G resulting from Fc sialylation. Sci. 313, 670–673 (2006)

    Article  CAS  Google Scholar 

  17. Aparna, H.S., Salimath, P.V.: Purification of an antigenic glycopeptide from buffalo colostrum. J. Food Sci. Technol. 38, 450–452 (2001)

    CAS  Google Scholar 

  18. Kanade, S.R., Rao, D.H., Hegde, R.N., Gowda, L.R.: The unique enzymatic function of field bean (Dolichos lablab) D-galactose specific lectin: a polyphenol oxidase. Glycoconj. J. 26, 535–545 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. Rosenfeld, J., Capdevielle, Guillemot, C., Ferrara, P.: In-gel digestion for internal sequence analysis after one-or two-dimensional gel electrophoresis. Anal. Biochem. 203, 173–179 (1992)

    Article  CAS  PubMed  Google Scholar 

  20. Suckau, D., Resemann, A., Schuerenberg, M., Hufnagel, P., Franzen, J., Holle, A.: A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 376, 952–965 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Kita, Y., Muira, Y., Furukawa, J., Nakano, M., Shinohara, Y., Ohno, M., Takimoto, A., Nishimura, S.-I.: Quantitative glycomics of human whole serum glycoproteins based on the standardized protocol for liberating N-glycans. Mol. Cell. Proteomics 6, 1437–1445 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Furukawa, J., Shinohara, Y., Kuramoto, H., Miura, Y., Shimaoka, H., Kurogochi, M., Nakano, M., Nishimura, S.-I.: Comperhensive approach to structural and functional glycomics based on chemoselective glycoblotting and sequential tag conversion. Anal. Chem. 80, 1094–1101 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Rohit, A.C., Aparna, H.S.: Characterization of β-lactoglobulin from buffalo colostrum and its possible interaction erythrocyte lipocalin-interacting-membrane-receptor (LIMR). J. Biochem. 150, 279–288 (2011)

    Article  Google Scholar 

  24. McKinney, M., Parkinson, A.: A simple, non-chromatographic procedure to purify immunoglobulins from serum and ascites fluid. J. Immunol. Methods 96, 271–278 (1987)

    Article  CAS  PubMed  Google Scholar 

  25. Premysl, K., Rodney, J.B., William, H.S.: Chromatographic purification of immunoglobulin G from bovine milk whey. J. Chromatograph. A 673, 45–53 (1994)

    Article  Google Scholar 

  26. Didier, L., Alain, O.: Bovine immunoglobulin G, β-lactoglobulin, α-lactalbumin and serum albumin in colostrum and milk during the early postpartum period. J. Dairy Res. 66, 421–430 (1999)

    Article  Google Scholar 

  27. Korhonen, H., Marnila, P., Gill, H.S.: Milk immunoglobulins and complement factors. Br. J. Nutr. 84, 75–80 (2000)

    Google Scholar 

  28. Gapper, L.W., Copestake, D.E., Otter, D.E., Indyk, H.E.: Analysis of bovine immunoglobulin G in milk, colostrum and dietary supplements a review. Anal. Bioanal. Chem. 389, 93–109 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. Elke, S., Leitner, B., Ryan, M.M., Elizabeth, H.D., Farhat, K., John, W., Evelina, A.: Evaluation of immunoglobulin purification methods and their impact on qualitative and yield of antigen-specific antibodies. Malarial J. 7, 129–138 (2008)

    Article  Google Scholar 

  30. Menegatti, S., Hussain, M., Naik, A.D., Carbonell, R.G., Rao, B.M.: mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands. Biotechnol. Bioeng. 110, 857–870 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Tong, F., Lin, D.Q., Yuan, X.M., Yao, S.J.: Enhancing IgG purification from serum albumin containing feedstock with hydrophobic charge-induction chromatography. J. Chromatogr. A 1244, 116–122 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Ezan, E., Bitsch, F.: Critical comparison of MS and immunoassays for the bioanalysis of therapeutic antibodies. Bioanalysis 1, 1375–1388 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Wu, H., Chen, S., Shortreed, M.R., Kreitinger, G.M., Yuan, Y., Frey, B.L., Zhang, Y., Mirza, S., Cirillo, L.A., Olivier, M., Smith, L.M.: Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification. PLoS One. 6(10):e26217 (2011)

  34. Mesmin, C., Cholet, S., Blanchard, A., Chambon, Y., Azizi, M., Ezan, E.: Mass spectrometric quantification of AcSDKP-NH2 in human plasma and urine and comparison with an immunoassay. Rapid Commun. Mass Spectrom. 26, 163–172 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Nwosu, C.C., Aldredge, D.L., Lee, H., Lerno, L.A., Zivkovic, A.M., German, J.B., Lebrilla, C.B.: Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J. Proteome Res. 11, 2912–2924 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Nongluk, S., Sachiko, K., Hirokazu, Y., Hiroaki, H., Shin-ichi, N., Keita, Y., Ito, H., Hisashi, N.J., Koichi, K., Yasuo, S.: Bovine milk whey for preparation of natural N-glycans: structural and quantitative analysis. Open Glysosci. 5, 41–50 (2012)

    Article  Google Scholar 

  37. Takimori, S., Shimaoka, H., Furukawa, J., Yamashita, T., Amano, M., Fujitani, N., Takegawa, Y., Hammarström, L.I., Kacskovics, Shinohara, Y., Nishimura, S.: Alteration of the N-glycome of bovine milk glycoproteins during early lactation. FEBS J. 278, 3769–3781 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Robert, A., Fredrik, W., Jeffrey, V.R.: Novel roles for the Fc glycan. Ann. N.Y. Acad. Sci. 1253, 170–180 (2012)

    Article  Google Scholar 

  39. Hodoniczky, J., Zheng, Y.Z., James, D.C.: Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol. Prog. 21, 1644–1652 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. Menon, S., Rosenberg, K., Graham, S.A., Ward, E.M., Taylor, M.E., Drickamer, K.: Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements. Proc. Natl. Acad. Sci. U. S. A. 106, 11524–11529 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sato, T., Takio, K., Kobata, A., Greenwalt, D.E., Furukawa, K.: Site-specific glycosylation of bovine butyrophilin. J. Biochem. 117, 147–157 (1995)

    CAS  PubMed  Google Scholar 

  42. Wei, Z., Nishimura, T., Yoshida, S.: Presence of a glycan at a potential N-glycosylation site, Asn-281, of Bovine Lactoferrin. J. Dairy Sci. 83, 683–689 (2000)

    Article  CAS  PubMed  Google Scholar 

  43. Urashima, T., Taufik, E., Fukuda, K., Asakuma, S.: Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci. Biotechnol. Biochem. 77, 455–466 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

HSA thanks INSA-JSPS for the award of overseas associateship and Mamatha Bhanu thanks University Post-graduate cell for the award of fellowship. Authors also thank protemics facility, IISc, Bangalore.

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Funding

This work was supported by the Indian National Science Academy (INSA) and the Japan Society for the Promotion of Science (JSPS) fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Aparna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhanu, L.S.M., Amano, M., Nishimura, SI. et al. Glycome characterization of immunoglobulin G from buffalo (Bubalus bubalis) colostrum. Glycoconj J 32, 625–634 (2015). https://doi.org/10.1007/s10719-015-9608-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9608-4

Keywords

Navigation