Skip to main content

Advertisement

Log in

Click inspired synthesis of antileishmanial triazolyl O-benzylquercetin glycoconjugates

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The 1,3-dipolar cycloaddition of deoxy-azido sugars 1 with O-benzylquercetin alkynes (57) to afford regioselective triazole-linked O-benzylquercetin glycoconjugates (810) was investigated in the presence of CuI/DIPEA in dichloromethane. All the developed glycoconjugates (810) were evaluated for anti-leishmanial activity against the promastigotes and amastigotes of Leishmania donovani.

Click Inspired Synthesis of Antileishmanial Triazolyl O-Benzylquercetin Glycoconjugates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

FBS:

Fetal bovine serum

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide

IC:

inhibitory concentrations

SI:

selective Index

SIRC cell line:

Statens Seruminstitut Rabbit Corneal (SIRC) cell line

MIA PaCa cell line:

MIA PaCa pancreatic epithelial cell lines.

References

  1. Mishra, B.B., Tiwari, V.K.: Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 46, 4769–4807 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. Wong, I.L.K., Chan, K.F., Chen, Y.F., Lun, Z.R., Chan, T.H., Chow, L.M.C.: In vitro and in vivo efficacy of novel flavonoid dimers against cutaneous leishmaniasis. Antimicrob. Agents Chemother. 58, 3379–3388 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Singh, N., Mishra, B.B., Bajpai, S., Singh, R.K., Tiwari, V.K.: Natural product based leads to fight against leishmaniasis. Bioorg. Med. Chem. 22, 18–45 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. Mishra, B.B., Singh, R.K., Srivastava, A., Tripathi, V., Tiwari, V.K.: Fighting against leishmaniasis: search of alkaloids as future true potential anti-leishmanial agents. Mini-Rev. Med. Chem. 9, 107–123 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Singh, Y., Spinelli, N., De Francq, E., Dumy, P.: A novel heterobifunctional linker for facile access to bioconjugates. Org. Biomol. Chem. 4, 1413–1419 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Virta, P., Katajisto, J., Niittymaki, T., Lonnberg, H.: Solid-orted synthesis of oligomeric bioconjugates. Tetrahedron 59, 5137–5174 (2003)

    Article  CAS  Google Scholar 

  7. Dedola, S., Nepogodiev, S.A., Field, R.A.: Recent applications of the CuI-catalysed huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Org. Biomol. Chem. 5, 1006–1017 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Bock, V.D., Hiemstra, H., van-Maarseveen, J.H.: CuI-catalyzed alkyne-azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem. 51–68 (2006)

  9. Binder, W.H., Sachsenhofer, R.: ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 15–54 (2007)

    Article  CAS  Google Scholar 

  10. Binder, W.H., Sachsenhofer, R.: Click’ chemistry in polymer and material science: an update. Rapid. Commun. 29, 952–981 (2008)

    Article  CAS  Google Scholar 

  11. Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001)

    Article  CAS  Google Scholar 

  12. Gallos, J.K., Koumbis, A.E.: 1,3-dipolar cycloadditions in the synthesis of carbohydrate mimics. Part 1: nitrile oxides and nitronates. Curr. Org. Chem. 7, 397–426 (2003)

    Article  CAS  Google Scholar 

  13. Koumbis, A.E., Gallos, J.K.: 1,3-dipolar cycloadditions in the synthesis of carbohydrate mimics. Part 2: nitrones and oximes. Curr. Org. Chem. 7, 585–628 (2003)

    Article  CAS  Google Scholar 

  14. Koumbis, A.E., Gallos, J.K.: 1,3-dipolar cycloadditions in the synthesis of carbohydrate mimics. Part 3: azides, diazo compounds and other dipoles. Curr. Org. Chem. 7, 771–797 (2003)

    Article  CAS  Google Scholar 

  15. Szeja, W., Swierk, P., Grynkiewicz, G., Rusin, A., Papaj, K.: An approach to C-glycosidic conjugates of isoflavones. Heterocycl. Commun. 19, 133–138 (2013)

    Article  CAS  Google Scholar 

  16. Xiao, J., Chen, T., Cao, H.: Advances in the biotechnological glycosylation of valuable flavonoids. Biotech. Adv. 32, 1145–1156 (2014)

    Article  CAS  Google Scholar 

  17. Olivero-Verbel, J., Pacheco-Londono, L.: Structure–activity relationships for the anti-HIV activity of flavonoids. J. Chem. Inf. Comput. Sci. 42, 1241–1246 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Bae, E.A., Han, M.J., Lee, M., Kim, D.H.: In vitro inhibitory effect of aome flavonoids on rotavirus infectivity. Biol. Pharm. Bull. 23, 1122–1124 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Gupta, P., Sharma, U., Gupta, P., Siripurapu, K.B., Maurya, R.: Evolvosides C-E, flavonol-4-O-triglycosides from Evolvulus alsinoides and their anti-stress activity. Bioorg. Med. Chem. 21, 1116–1122 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. Makino, T., Kanemaru, M., Okuyama, S., Shimizu, R., Tanaka, H., Mizukami, H.: Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. J. Nat. Med. 67, 881–886 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Kong, C.S., Lee, J.I., Kim, Y.A., Kim, J.A., Bak, S.S., Hong, J.W., Park, H.Y., Yea, S.S., Seo, Y.: Evaluation on anti-adipogenic activity of flavonoid glucopyranosides from Salicornia herbacea. Process Biochem. 47, 1073–1078 (2012)

    Article  CAS  Google Scholar 

  22. Huisgen, R.: 1,3-dipolar cyloadditions past and future. Angew. Chem. Int. Ed. 2, 565–598 (1963)

    Article  Google Scholar 

  23. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari, V.K., Mishra, R.C., Sharma, A., Tripathi, R.P.: Carbohydrate based potential chemotherapeutic agents: recent developments and their scope in future drug discovery. Mini-Rev. Med. Chem. 12, 1497–1519 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Cao, H., Hwang, J., Chen, X.: Carbohydrate-containing natural products in medicinal chemistry. In: Tiwari, V.K., Mishra, B.B. (eds.) Opportunity, challenge and scope of natural products in medicinal chemistry, pp. 166–180. Research Signpost Publication, Trivandrum (2011)

    Google Scholar 

  26. Kushwaha, D., Dwivedi, P., Kuanar, K.S., Tiwari, V.K.: Click reaction in carbohydrate chemistry: recent developments and future perspective. Curr. Org. Syn. 10, 90–135 (2013)

    Article  CAS  Google Scholar 

  27. Tiwari, V.K., Kumar, A., Schmidt, R.R.: Disaccharide-containing macrocycles by click chemistry and intramolecular glycosylation. Eur. J. Org. Chem. 29452956 (2012).

  28. Kuijpers, B.H.M., Groothuys, S., Keerweer, A.R., Quaedflieg, P.J.L.M., Blaquw, R.H., Van Delft, F.L., Rutjes, F.P.J.T.: Expedient synthesis of triazole-linked glycosyl amino acids and peptides. Org. Lett. 6, 3123–3126 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Bouktaib, M., Lebrun, S., Atmani, A., Rolando, C.: Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions. Tetrahedron 58, 10001–10009 (2002)

    Article  CAS  Google Scholar 

  30. Singh, A., Mishra, B.B., Kale, R.R., Kushwaha, D., Tiwari, V.K.: A convenient synthesis of novel glycosyl azetidines under mitsunobu reaction conditions. Synth. Commun. 42, 3598–3613 (2012)

    Article  CAS  Google Scholar 

  31. Mishra, K.B., Tiwari, V.K.: Click chemistry inspired synthesis of morpholine-fused triazoles. J. Org. Chem. 79, 5752–5762 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. Kumar, D., Mishra, A., Mishra, B.B., Tiwari, V.K.: Synthesis of glycoconjugate benzothiazoles via cleavage of benzotriazole ring. J. Org. Chem. 78, 899–909 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. Kushwaha, D., Singh, R.S., Tiwari, V.K.: Fluorogenic dual click derived bis-glycoconjugated triazolocoumarins for selective recognition of Cu(II) ion. Tetrahedron Lett. 55, 4532–4536 (2014)

    Article  CAS  Google Scholar 

  34. Kumar, D., Mishra, K.B., Mishra, B.B., Mondal, S., Tiwari, V.K.: Click chemistry inspired highly facile synthesis of triazolyl ethisterone glycoconjugates. Steroids 80, 71–79 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. Mishra, K.B., Mishra, B.B., Tiwari, V.K.: Efficient synthesis of ethisterone glycoconjugate via bis-triazole. Carbohydrate Res. 399, 2–7 (2014)

    Article  CAS  Google Scholar 

  36. Sousa, M.C., Varandas, R., Santos, R.C., Santos-Rosa, M., Alves, V., Salvador, J.A.R.: Antileishmanial activity of semisynthetic lupane triterpenoids betulin and betulinic acid derivatives: synergistic effects with miltefosine. PLoS ONE 9, e89939 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mishra, B.B., Gour, J.K., Kishore, N., Singh, R.K., Tripathi, V., Tiwari, V.K.: An antileishmanial prenyloxy-naphthoquinone from roots of plumbago zeylanica. Nat. Prod. Res. 27, 480–485 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Mittra, B., Saha, A., Chowdhury, A.R., Pal, C., Mandal, S., Mukhopadhyay, S., Bandyopadhyay, S., Majumder, H.K.: Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol. Med. 6, 527–541 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lewin, G., Cojean, S., Guptac, S., Verma, A., Puri, S.K., Loiseau, P.M.: In vitro antileishmanial properties of new flavonoids against Leishmania donovani. Biomed. Prevent. Nutrit. 1, 168–171 (2011)

    Article  Google Scholar 

  40. Sundar, S., Olliaro, P.L.: Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther. Clin. Risk Manag. 3, 733–740 (2007)

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by Department of Science and Technology (DST), New Delhi under Women Scientist-A scheme (SR/WOS-A/CS-83/2011 (G) dated 17.07.2012). VKT thanks BHU and CDRI, Lucknow for providing spectroscopic analysis and CSIR New Delhi for the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Tiwari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, P., Mishra, K.B., Mishra, B.B. et al. Click inspired synthesis of antileishmanial triazolyl O-benzylquercetin glycoconjugates. Glycoconj J 32, 127–140 (2015). https://doi.org/10.1007/s10719-015-9582-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9582-x

Keywords

Navigation