Skip to main content
Log in

Glycoconjugates prevent B. anthracis toxin-induced cell death through binding while activating macrophages

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Bacillus anthracis toxins may be attenuated if macrophages could neutralize toxins upon contact or exposure. Glycoconjugate-bearing polymers, which have been shown to bind to Bacillus spores, were tested for recognition and binding of protective antigen (PA), lethal factor (LF), and edema factor (EF) toxins. We have demonstrated modulation of macrophage activity following exposure to these toxins. Without glycoconjugate (GC) activation, murine macrophages were killed by Bacillus toxins. GCs were shown to have a protective influence, sparing macrophages from toxin-induced cell death, as shown by increased macrophage cell viability based on trypan blue assay. Increased levels of inducible nitric oxide (NO) production by macrophages in presence of GCs suggest that GCs provide an activation signal for macrophages and stimulate their function. Results hint to GCs that promote neutralization of Bacillus toxins, block toxin-induced macrophage death, while increasing macrophage activation. Polymeric GCs may suggest novel approaches to improve existing or develop new vaccines as well as immunotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Glyc-PAA-flu:

Glycoconjugate-polyacrylamide-fluorescein polymer

GC(s):

Glycoconjugate(s)

GC1:

Galα1-3 GalNAcα -PAA-flu

GC2:

Galβ1-3 GalNAcβ-PAA-flu

GC3:

GalNAcα1-3 GalNAcβ -PAA-flu

GC4:

Galβ1-3 Galβ -PAA-flu

GC5:

GlcNAcβ1-4 GlcNAcβ -PAA-flu

GC6:

Fucα1-4 GlcNAcβ -PAA-flu

GC7:

Galβ1-2 Galβ -PAA-flu

GC8:

Fucα1-3 GlcNAcβ -PAA-flu

GC9:

GlcNAcβ1-3 GlcNAcα -PAA-flu

GC10:

GalNAcβ1-6 GalNAcα -PAA-flu

Gal:

Galactose

GalNAc:

N-acetylgalactosamine

Fuc:

Fucose

GlcNAc:

N-acetylglucosamine

PAA:

Polyacrylamide

Flu:

Fluorescein

LDH:

Lactate dehydrogenase

NO:

Nitric oxide

CFU:

Colony forming units

M:

Macrophages

PA:

Protective antigen

LF:

Lethal factor

EF:

Edema factor

ATR:

Anthrax toxin receptor

References

  1. Weiss, M.M., Weiss, P.D., Weiss, J.B.: Anthrax vaccine and public health policy. Am. J. Public Health 97(11), 1945–1951 (2007)

    Article  PubMed  Google Scholar 

  2. Barnaby, W.: In: Barnaby, W. (ed.) The Plague Markers: The secret World of Biological Warfare. Vision Paperbacks, London (1997)

    Google Scholar 

  3. Jamie, W.E.: Anthrax: diagnosis, treatment, prevention. Prim. Care Update OB/GYNS 9, 117–121 (2002)

    Article  Google Scholar 

  4. Spencer, R.C.: Bacillus anthracis. J. Clin. Pathol. 56, 182–177 (2003)

    Article  PubMed  CAS  Google Scholar 

  5. Friedlander, A.M.: Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986)

    PubMed  CAS  Google Scholar 

  6. Popov, S.G., Villasmil, R., Bernardi, J., Grene, E., Cardwell, J., Popova, T., Wu, A., Alibek, A., Bailey, C., Alibek, K.: Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett. 527, 211–215 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. Singh, Y., Leppla, S.H., Bhatnagar, R., Friedlander, A.M.: Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells. J. Biol. Chem. 264, 11099–11102 (1989)

    PubMed  CAS  Google Scholar 

  8. Cote, C.K., Rossi, C.A., Kang, A.S., Morrow, P.R., Lee, J.S., Welkos, S.L.: The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb. Pathog. 38, 209–225 (2005)

    Article  PubMed  CAS  Google Scholar 

  9. Bradley, K.A., Young, J.A.: Anthrax toxin receptor proteins. Biochem. Pharmacol. 65, 309–314 (2003)

    Article  PubMed  CAS  Google Scholar 

  10. Bonuccelli, G., Sotgia, F., Frank, P.G., Williams, T.M., de Almeida, C.J., Tanowitz, H.B., Sherer, P.E., Hotchkiss, K.A., Terman, B.I., Rollman, B., Alileche, A., Brojatsch, J., Lisanti, M.P.: Anthrax toxin receptor (ATR/TEM8) is highly expressed in epithelial cells lining the toxin’s three sites of entry (lungs, skin, and intestine). Am. J. Physiol. Cell Physiol. 288, C1402–C1410 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. Duesbery, N.S., Vande Woude, G.F.: Anthrax toxins. Cell. Mol. Life. Sci. 55, 1599–1609 (1999)

    Article  PubMed  CAS  Google Scholar 

  12. Guidi-Rontani, C., Mock, M.: Macrophage interactions. Curr. Top. Microbiol. Immunol. 271, 115–141 (2002)

    PubMed  CAS  Google Scholar 

  13. Ramirez, D.M., Leppla, S.H., Schneerson, R., Shiloach, J.: Production, recovery and immunogenicity of the protective antigen from a recombinant strain of Bacillus anthracis. J. Ind. Microbiol. Biotechnol. 28, 232–238 (2002)

    Article  PubMed  CAS  Google Scholar 

  14. Little, S.F., Webster, W.M., Ivins, B.E., Fellows, P.F., Norris, S.L., Andrews, G.P.: Development of an in vitro-based potency assay for anthrax vaccine. Vaccine 22, 2843–2852 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. Baillie, L., Read, T.D.: Bacillus anthracis, a bug with attitude! Curr. Opin. Microbiol. 4, 78–81 (2001)

    Article  PubMed  CAS  Google Scholar 

  16. De Bolle, X., Bayliss, C.D., Field, D., van de Ven, T., Saunders, N.J., Hood, D.W., Moxon, E.R.: The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol. Microbiol. 35, 211–222 (2000)

    Article  PubMed  Google Scholar 

  17. Gabius, H.J., Gabius, S.: Glycosciences: Status and Perspectives. Chapman & Hall, London (1997)

    Google Scholar 

  18. Crocker, P.R., Feizi, T.: Carbohydrate recognition systems: functional trials in cell- cell interaction. Curr. Opin. Struct. Biol. 6, 679–691 (1996)

    Article  PubMed  CAS  Google Scholar 

  19. Feizi, T.: Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. Karlsson, K.A., Angstrom, J., Bergstrom, J., Lanne, B.: Microbial interaction with animal cell surface carbohydrates. APMIS Suppl. 27, 71–83 (1992)

    PubMed  CAS  Google Scholar 

  21. Axford, J.: The impact of glycobiology on medicine. Trends Immunol. 22, 237–239 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. Borman, S.: Carbohydrate vaccines. Chem. Eng. News. 9, 31–35 (2004)

    Google Scholar 

  23. Tarasenko, O., Islam, Sh, Paquiot, D., Levon, K.: Glycoconjugates for recognition of Bacillus spores. Carb. Res. 339, 2859–2870 (2004)

    Article  CAS  Google Scholar 

  24. Tarasenko, O., Burton, E., Soderberg, L., Alusta, P.: Polymeric glycoconjugates protect and activate macrophages to promote killing of Bacillus cereus spores during phagocytosis. Glycoconj. J. 25, 473–480 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. Tarasenko, O., Scott, A., Soderberg, S., Ponnappan, U., Alusta, P.: Killing of Bacillus spores is mediated by nitric oxide and nitric oxide synthase during glycoconjugate—enhanced phagocytosis. Glycoconj. J. 27(1), 13–25 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. Tarasenko, O., Soderberg, L., Hester, K., Park Kim, M., McManus, D., Alusta, P.: Glycoconjugates enhanced the intracellular killing of Bacillus spores, increasing macrophage viability and activation. Arch. Microbiol. 189, 579–587 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. Castleberry, J., Alusta, P., Soderberg, L., Tarasenko, O.: Binding and neutralization of Bacillus anthracis protective antigen toxin and its complexes using glycoconjugates. PMSE 98, 841–842 (2008)

    CAS  Google Scholar 

  28. Tarasenko O., Alusta P.: Docking approach to study receptor-ligand interactions. In: MidSouth Computational Biology and Bioinformatics Society Fourth Annual Conference. New Orleans, Louisiana, February 1st–3 rd, (abstract/poster) (2007)

  29. Levon K., Tarasenko O., Bin Yu.: Glycoconjugate sensors. U.S. Patent Application Serial No.: 20040161861 (2004)

  30. Keller, R., Geiges, M., Keist, R.: L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res. 50, 1421–1425 (1990)

    PubMed  CAS  Google Scholar 

  31. Beauvais, F., Michel, L., Dubertret, L.: The nitric oxide donors, azide and hydroxylamine, inhibit the programmed cell death of cytokine-deprived human eosinophils. FEBS Lett. 361, 229–232 (1995)

    Article  PubMed  CAS  Google Scholar 

  32. Choi, B.M., Pae, H.O., Jang II, S., Kim, Y.M., Chung, H.T.: Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J. Biochem. Mol. Biol. 35, 116–126 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. Dimmelder, S., Haendeler, J., Nehls, M., Zeiher, A.M.: Suppression of apoptosis by nitric oxide via inhibition of interleukin-1β-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J. Exp. Med. 185, 601–607 (1997)

    Article  Google Scholar 

  34. Kwon, Y.G., Min, J.K., Kim, K.M., Lee, D.J., Billiar, T.R., Kim, Y.M.: Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. Biol. Chem. 276, 10627–10633 (2001)

    Article  PubMed  CAS  Google Scholar 

  35. Vespa, G.N.R., Cunha, F.Q., Silva, J.S.: Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect. Immun. 62, 5177–5182 (1994)

    PubMed  CAS  Google Scholar 

  36. Black, J.G.: In: Microbiology: Black J.G. (ed.) Principles and Explorations, pp. 463–484. John Wiley & Sons, Inc. Publishing 2005

  37. Crocker, P.R., Feizi, T.: Carbohydrate recognition systems: functional trials in cell- cell interaction. Curr. Opin. Struct. Biol. 6, 679–691 (1996)

    Article  PubMed  CAS  Google Scholar 

  38. Feizi, T.: Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000)

    Article  PubMed  CAS  Google Scholar 

  39. Bertozzi, C.R., Kiessling, L.L.: Chemical glycobiology. Science 291, 2357–2364 (2001)

    Article  PubMed  CAS  Google Scholar 

  40. Feizi, T.: Progress in deciphering the information content of the ‘glycome’ - a crescendo in the closing years of the millennium. Glycoconj. J. 17, 553–565 (2000)

    Article  PubMed  CAS  Google Scholar 

  41. Kiessling, L.L., Gestwicki, J.E., Strong, L.E.: Synthetic multivalent ligands in the exploration of cell surface interactions. Curr. Opin. Chem. Biol. 6, 696–703 (2000)

    Article  Google Scholar 

  42. Kiessling, L.L., Pohl, N.L.: Strength in numbers: non-natural polyvalent carbohydrate derivatives. Chem. Biol. 3, 71–77 (1996)

    Article  PubMed  CAS  Google Scholar 

  43. Kojima, N., Hakomori, S.: Sialyllactose-mediated cell Interaction during granulosa cell differentiation. J. Biol. Chem. 264, 20159–20162 (1989)

    PubMed  CAS  Google Scholar 

  44. Kojima, N., Hakomori, S.: Carbohydrate-carbohydrate interaction of glycosphingolipids. J. Biol. Chem. 266, 17552–17558 (1991)

    PubMed  CAS  Google Scholar 

  45. Cunningham, K., Lacy, D.B., Mogridge, J.: Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. PNAS 99(10), 7049–7053 (2002)

    Article  PubMed  CAS  Google Scholar 

  46. Lacy, D.B., Mourez, M., Fouassier, A., Collier, R.J.: Mapping the anthrax protective antigen binding site on the lethal and edema factors. J. Biol. Chem. 277(4), 3006–3010 (2002)

    Article  PubMed  CAS  Google Scholar 

  47. Taylor, M.E.: Recognition of complex carbohydrates by the macrophage mannose receptor. Biochem. Soc. Trans. 21, 468–473 (1993)

    PubMed  CAS  Google Scholar 

  48. Stein, M., Keshav, S., Harris, N., Gordon, S.: Interleukin-4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992)

    Article  PubMed  CAS  Google Scholar 

  49. Stahl, P.D.: The mannose receptor and other macrophage lectins. Curr. Opin. Immunol. 4, 49–52 (1982)

    Article  Google Scholar 

  50. Aderem, A., Underhill, D.M.: Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999)

    Article  PubMed  CAS  Google Scholar 

  51. Rosenberger, C.M., Finlay, B.B.: Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Mol. Cell. Biol. 4, 385–396 (2003)

    CAS  Google Scholar 

  52. DeFife, K.M., Jenney, C.R., Colton, E., Anderson, J.M.: Disruption of filamentous actin inhibits human macrophage fusion. FASEB 13, 823–832 (1999)

    CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported in part by start-up funds and the Kathleen Thomsen Hall Charitable Trust Grant awarded to Tarasenko. This study conforms to the IBC protocol # 09049, the UALR IACUC protocol # R-09-01 and the UAMS IACUC protocol # 2985. The authors extend their appreciation to editors and reviewers, whose comments and suggestions were most helpful in making this manuscript a more solid one for publication in the Glycoconjugate Journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Tarasenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasenko, O., Scott, A., Soderberg, L. et al. Glycoconjugates prevent B. anthracis toxin-induced cell death through binding while activating macrophages. Glycoconj J 29, 25–33 (2012). https://doi.org/10.1007/s10719-011-9360-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-011-9360-3

Keywords

Navigation