Skip to main content
Log in

TLR-independent induction of human monocyte IL-1 by phosphoglycolipids from thermophilic bacteria

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The structures of phosphoglycolipids PGL1 and PGL2 from the thermophilic bacteria Meiothermus taiwanensis, Meiothermus ruber, Thermus thermophilus, and Thermus oshimai are determined recently (Yang et al. in J Lipid Res. 47:1823–1932, 2006). These bacteria belong to Gram-negative bacteria that do not contain lipopolysaccharide, but high amounts of phosphoglycolipids and glycoglycerolipids. Here we show that PGL1/PGL2 mixture (PGL1: PGL2 = 10:1 ~ 10:2) from M. taiwanensis and T. oshimai, but not T. thermophilus and M. ruber, up-regulate interleukin-1β (IL-1β) production in human THP-1 monocytes and blood-isolated primary monocytes. PGL2 was purified after phospholipase A2 hydrolysis of PGL1 in the PGL1/PGL2 mixture followed by column chromatography. PGL2 did not induce proIL-1 production, even, partially (35–40%) inhibited PGL1-mediated proIL-1 production, showing that PGL1 is the main inducer of proIL-1 production in PGL1/PGL2 mixture. The production of proIL-1 stimulated by phosphoglycolipids was strongly inhibited by specific PKC-α, MEK1/2, and JNK inhibitors, but not by p38-specific inhibitor. The intracellular calcium influx was involved in phosphoglycolipids-mediated proIL-1 production. Using blocking antibody and Toll-like receptor (TLR)-linked NF-κB luciferase assays, we found that the cellular receptor(s) for phosphoglycolipids on proIL-1 production was TLR-independent. Further, phosphoglycolipids isolated from T. thermophilus and M. ruber did not induce proIL-1 production, even though T. thermophilus possess more PGL1 than PGL2 (6:4). Specially, the fatty acid composition of phosphoglycolipids from both T. thermophilus and M. ruber consists of a low percentage of C15 (<10%) and a high percentage of C17 (>75%). It suggests, the C15 percentage of PGL may play a critical role in PGL-mediated proIL-1 induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ray, P.H., White, D.C., Brock, T.D.: Effect of growth temperature on the lipid composition of Thermus aquaticus. J. Bacteriol. 108, 227–235 (1971)

    PubMed  CAS  Google Scholar 

  2. Williams, R.A.D., Da Costa, M.S.: The genus Thermus and related microorganisms. In: Balows, A., Truper, H.G., Dworkin, M., Harder, W., Schleifer, K.-H. (eds.) The Prokaryotes, 2nd edn., pp 3745–3753. Springer, New York (1992)

    Google Scholar 

  3. Ferreira, A.M., Wait, R., Nobre, M.F., Da Costa, M.S.: Characterization of glycolipids from Meiothermus spp. Microbiology 145, 1191–1199 (1999)

    PubMed  CAS  Google Scholar 

  4. Silva, Z., Borges, N., Martins, L.O., Wait, R., Da Costa, M.S., Santos, H.: Combined effect of the growth temperature and salinity of the medium of the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3, 163–172 (1999)

    Article  PubMed  CAS  Google Scholar 

  5. Forterre, P., Bouthier de la Tour, C., Philippe, H., Duguet, M.: Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria. Trends Genet. 16, 152–154 (2000)

    Article  PubMed  CAS  Google Scholar 

  6. Lesley, S.A., Kuhn, P., Godzik, A., Deacon, A.M., Mathews, I., Kreusch, A., Spraggon, G., Klock, H.E., McMullan, D., Shin, T., et al.: Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. U. S. A. 99, 11664–11669 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. De Groot, A., Chapon, V., Servant, P., Chriten, R., Saux, M.F., Sommer, S., Heulin, T.: Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara desert. Inst. J. Sys. Evol. Microbiol. 55, 2441–2446 (2005)

    Article  CAS  Google Scholar 

  8. Yang, Y.L., Yang, F.L., Jao, S.C., Chen, M.Y., Tsay, S.S., Zou, W., Wu, S.H.: Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus. J. Lipid Res. 47, 1823–1832 (2006)

    Article  PubMed  CAS  Google Scholar 

  9. Dutronc, Y., Porcelli, S.A.: The CD1 family and T cell recognition of lipid antigens. Tissue Antigens 60, 337–353 (2002)

    Article  PubMed  CAS  Google Scholar 

  10. Parekh, V.V., Wilson, M.T., Van Kaer, L.: iNKT-cell responses to glycolipids. Crit. Rev. Immunol. 25, 183–213 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. Krishnan, L., Dicaire, C., Patel, G.B., Sprott, G.D.: Archaeosome vaccine adjuvants induce strong humoral, cell-mediated and memory responses: comparison to conventional liposomes and alum. Infect. Immun. 68, 54–63 (2000)

    Article  PubMed  CAS  Google Scholar 

  12. Kinjo, Y., Wu, D., Kim, G., Xing, G.-W., Poles, M.A., Ho, D.D., Kawahara, K., Wong, C.-H., Kronenberg, M.: Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. Kinjo, Y., Tupin, E., Wu, D., Fujio, M., Garcia-Navarro, R., Benhnia, M.R.-E.-I., Zajonc, D.M., Ben-Menachem, G., Ainge, G.D., Painter, G.F., Khurana, A., Hoebe, K., Behar, S.M., Beutler, B., Wilson, I.A., Tsuji, M., Sellati, T.J., Wong, C.-H., Kronenberg, M.: Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nature Immun. 7, 978–986 (2006)

    Article  PubMed  CAS  Google Scholar 

  14. Stetson, D.B., Mohrs, M., Reinhardt, R.L., Baron, J.L., Wang, Z.E., Gapin, L., Kronenberg, M., Locksley, R.M.: Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Bruno, A., Rossi, C., Marcolongo, G., Di Lena, A., Venzo, A., Berrie, C.P., Corda, D.: Selective in vivo anti-inflammatory action of the galactolipid monogalactosyl-diacylglycerol. Eur. J. Pharmacol. 524, 159–168 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. Phoebe, C.H., Jr., Combie, J., Albert, F.G., Van Tran, K., Cabrera, J., Correira, H.J., Guo, Y., Lindermuth, J., Rauert, N., Galbraith, W., Selitrennikoff, C.P.: Extremophilic organisms as an unexplored source of antifungal compounds. J. Antibiot. (Tokyo) 54, 56–65 (2001)

    PubMed  CAS  Google Scholar 

  17. Anderson, R., Huang, Y.: Fatty acids are precursors of alkylamines in Deinococcus radiodurans. J. Bacteriol. 174, 7168–7173 (1992)

    PubMed  CAS  Google Scholar 

  18. Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T., Cannizzaro, L.A., Huebner, K., Black, R.A.: Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992)

    Article  PubMed  CAS  Google Scholar 

  19. Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., et al.: A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992)

    Article  PubMed  CAS  Google Scholar 

  20. Dinarello, C.A.: Interleukin-1. Cytokine Growth Factor Rev. 8, 253–265 (1997)

    Article  PubMed  CAS  Google Scholar 

  21. Schumann, R.R., Belka, C., Reuter, D., Lamping, N., Kirschning, C.J., Weber, J.R., Pfeil, D.: Lipopolysaccharide activates caspase-1 (interleukin-1-converting) in cultured monocytic and endothelial cells. Blood 91, 577–584 (1998)

    PubMed  CAS  Google Scholar 

  22. Loppnow, H., Werdan, K., Reuter, G., Flad, H.D.: The interleukin-1 and interleukin-1 converting enzyme families in cardiovascular system. Eur. Cytokine. Netw. 9, 675–680 (1998)

    PubMed  CAS  Google Scholar 

  23. Li, X., Commane, M., Jiang, Z., Stark, G.R.: IL-1-induced NFκB and c-Jun N-terminal kinase (JNK) activation diverge at IL-1 receptor-associated kinase (IRAK). Proc. Natl. Acad. Sci. U. S. A. 98, 4461–4465 (2001)

    Article  PubMed  CAS  Google Scholar 

  24. Loppnow, H., Libby, P.: Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest. 85, 731–738 (1990)

    Article  PubMed  CAS  Google Scholar 

  25. Beales, I.L.: Effect of Interlukin-1 on proliferation of gastric epithelial cells in culture. BMC Gastroenterology 2, 7 (2002)

    Article  PubMed  Google Scholar 

  26. Xaus, J., Comalada, M., Valledor, A.F., Lloberas, J., Lopez-Soriano, F., Argiles, J.M., Yang, J., Hooper, W.C., Phillips, D.J., Talkington, D.F.: Interleukin-1beta responses to Mycoplasma pneumoniae infection are cell-type specific. Microb. Pathog. 34, 17–25 (2003)

    Article  CAS  Google Scholar 

  27. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., Cobb, M.H.: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001)

    Article  PubMed  CAS  Google Scholar 

  28. Raingeaud, J., Gupta, S., Rogers, J.S., Dickens, M., Han, J., Ulevitch, R.J., Davis, R.J.: Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426 (1995)

    Article  PubMed  CAS  Google Scholar 

  29. Scherle, P.A., Jones, E.A., Favata, M.F., Daulerio, A.J., Covington, M.B., Nurnberg, S.A., Magolda, R.L., Tracks, J.M.: Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J. Immunol. 161, 5681–5686 (1998)

    PubMed  CAS  Google Scholar 

  30. Carter, A.B., Monick, M., Hunninghake, G.W.: Both Erk and p38 kinases are necessary for cytokine gene transcription. Am. J. Respir. Cell. Mol. Biol. 20, 751–758 (1999)

    PubMed  CAS  Google Scholar 

  31. Binétruy, B., Smeal, T., Karin, M.: Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351, 122–127 (1991)

    Article  PubMed  Google Scholar 

  32. Devary, Y., Gottlieb, R.A., Lau, L.F., Karin, M.: Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol. Cell. Biol. 11, 2804–2811 (1991)

    PubMed  CAS  Google Scholar 

  33. Pombo, C.M., Bonventre, J.V., Avruch, J., Woodgett, J.R., Kyriakis, J.M., Force, T.: The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J. Biol. Chem. 269, 26546–26551 (1994)

    PubMed  CAS  Google Scholar 

  34. Hambleton, J., Weinstein, S.L., Lem, L., DeFranco, A.L.: Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Natl. Acad. Sci. U. S. A. 93, 2774–2778 (1996)

    Article  PubMed  CAS  Google Scholar 

  35. Derijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M., Davis, R.J.: JNK1: a protein kinase stimulated by UV light and Ha-Has that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994)

    Article  PubMed  CAS  Google Scholar 

  36. Kallunki, T., Su, B., Tsigelny, I., Sluss, H.K., Derijard, B., Moore, G., Davis, R., Karin, M.: JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 8, 2996–3007 (1994)

    Article  PubMed  CAS  Google Scholar 

  37. Reimann, T., Buscher, D., Hipskind, R.A., Krautwald, S., Lohmann-Matthes, M.L., Baccarini, M.: Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and TNF-alpha genes. J. Immunol. 153, 5740–5749 (1994)

    PubMed  CAS  Google Scholar 

  38. Bennett, B.L., Sasaki, D.T., Murray, B.W., O’Leary, E.C., Sakata, S.T., Xu, W., Leisten, J.C., Motiwala, A., Pierce, S., Satoh, Y., Bhagwat, S.S., Manning, A.M., Anderson, D.W.: SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. U. S. A. 98, 13681–13686 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. Han, J., Lee, J.D., Bibbs, L., Ulevitch, R.J.: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994)

    Article  PubMed  CAS  Google Scholar 

  40. Lee, J.C., Laydon, J.T., McDonnell, P.C., Gallagher, T.F., Kumar, S., Green, D., McNulty, D., Blumenthal, M.J., Heys, J.R., Landvatter, S.W., Strickler, J.E., McLaughlin, M.M., Siemens, I.R., Fisher, S.M., Livi, G.P., White, J.R., Adams, J.L., Young, P.R.: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994)

    Article  PubMed  CAS  Google Scholar 

  41. Geng, Y., Valbracht, J., Lotz, M.: Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. J. Clin. Invest. 98, 2425–2430 (1996)

    Article  PubMed  CAS  Google Scholar 

  42. Chen, M.Y., Lin, G.H., Lin, Y.T., Tsay, S.S.: Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. Int. J. Sys. Evol. Microbiol. 52, 1647–1654 (2002)

    Article  CAS  Google Scholar 

  43. Lu, T.L., Chen, C.S., Yang, F.L., Fung, J.M., Chen, M.Y., Tsay, S.S., Li, J., Zou, W., Wu, S.H.: Structure of a major glycolipid from Thermus oshimai NTU-063. Carbohydr. Research. 339, 2593–2598 (2004)

    Article  CAS  Google Scholar 

  44. Hsu, H.Y., Wen, M.H.: Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem. 277, 22131–22139 (2002)

    Article  PubMed  CAS  Google Scholar 

  45. Chuang, T.S., Lee, J., Kline, L., Mathison, J.C., Ulevitch, R.J.: Toll-like receptor 9 mediates CpG-DNA signaling. J. Leukoc. Biol. 71, 538–544 (2002)

    PubMed  CAS  Google Scholar 

  46. Kuo, C.C., Lin, W.T., Liang, C.M., Liang, S.M.: Class I and III phosphatidylinositol 3’-kinase play distinct roles in TLR signaling pathway. J. Immunol. 176, 5943–5949 (2006)

    PubMed  CAS  Google Scholar 

  47. Muzio, M., Natoli, G., Saccani, S., Levrero, M., Mantovani, A.: The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-association factor 6 (TRAF6). J. Exp. Med. 187, 2097–2101 (1998)

    Article  PubMed  CAS  Google Scholar 

  48. Pask-Hughes, R.A., Shaw, N.: Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus. J. Bacteriol. 149, 54–58 (1982)

    PubMed  CAS  Google Scholar 

  49. Silipo, A., Molinaro, A., de Castro, C., Ferrara, R., Romano, I., Nicolaus, B., Lanzetta, R., Parrilli, M.: Structural analysis of a novel polysaccharide of the lipopolysaccharide-deficient extremophile gram-negative bacterium Thermus thermophilus HB8. Eur. J. Org. Chem. 24, 5047–5054 (2004)

    Article  CAS  Google Scholar 

  50. Dobson, P.R., Skjodt, H., Plested, C.P., Short, A.D., Virdee, K., Russell, R.G., Brown, B.L.: Interleukin-1 stimulates diglyceride accumulation in the absence of protein kinase C activation. Regul. Pept. 29, 109–116 (1990)

    Article  PubMed  CAS  Google Scholar 

  51. Brooks, J.W., Mizel, S.B.: Interleukin-1 and signal transduction. Eur. Cytokine. Netw. 5, 547–561 (1994)

    PubMed  CAS  Google Scholar 

  52. Beales, I., Calam, J.: Stimulation of IL-8 production in human gastric epithelial cells by Helicobacter pylori, IL-1b and TNF-a requires tyrosine kinase activity, but not protein kinase C. Cytokine 9, 514–520 (1997)

    Article  PubMed  CAS  Google Scholar 

  53. Beales, I., Calam, J.: lnterleukin-1b and tumor nexcrosis factor-a inhibit acid secretion in cultured rabbit parietal cells by multiple pathways. Gut 42, 227–234 (1998)

    Article  PubMed  CAS  Google Scholar 

  54. Beales, I.L., Calam, J.: Inhibition of carbachol stimulated acid secretion by interleukin 1beta in rabbit parietal cells requires protein kinase C. Gut 48, 782–789 (2001)

    Article  PubMed  CAS  Google Scholar 

  55. Chiodoni, C., Stoppacciaro, A., Sangaletti, S., Gri, G., Cappetti, B., Koezuka, Y., Colombo, M.P.: Different requirements for α-galactosylceramide and recombinant IL-12 antitumor activity in the treatment of C-26 colon carcinoma hepatic metastases. Eur. J. Immunol. 31, 3101–3110 (2001)

    Article  PubMed  CAS  Google Scholar 

  56. Antonopoulou, S., Nomikos, T., Oilonomou, A., Kyriacou, A., Andriotis, M., Fragopoulou, E., Pantazidou, A.: Characterization of bioactive glycolipids from Scytonema julianum (cyanobacteria). Comp. Biochem. Physiol., Part B. 140, 219–231 (2005)

    Article  CAS  Google Scholar 

  57. Hiromatsu, K., Dascher, C.C., Sugita, M., Gingrich-Baker, C., Behar, S.M., LeClair, K.P., et al.: Characterization of guinea-pig group 1 CD1 proteins. Immunol. 106, 159–172 (2002)

    Article  CAS  Google Scholar 

  58. Buwitt-Beckmann, U., Heine, H., Wiesmüller, K.H., Jung, G., Brock, R., Ulmer, A.J.: Lipopeptide structure determines TLR2 dependent cell activation level. FEBS J. 272, 6354–6364 (2005)

    Article  PubMed  CAS  Google Scholar 

  59. Buwitt-Beckmann, U., Heine, H., Wiesmüller, K.H., Jung, G., Brock, R., Akira, S., Ulmer, A.J.: TLR1- and TLR6-independent recognition of bacterial lipopeptides. J. Biol. Chem. 281, 9049–9057 (2006)

    PubMed  Google Scholar 

  60. Morr, M., Takeuchi, O., Akira, S., Simon, M.M., Mühlradt, P.F.:Differential recognition of structural details of bacterial lipopeptides by toll-like receptors. Eur. J. Immunol. 32, 3337–3347 (2002)

    PubMed  CAS  Google Scholar 

  61. Kawahara, K., Moll, H., Knirel, Y.L., Seydel, U., Zahringer, U.: Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur. J. Biochem. 267, 1837–1846 (2000)

    Article  PubMed  CAS  Google Scholar 

  62. Gray, J.G., Chandra, G., Clay, W.C., Stinnett, S.W., Haneline, S.A., Lorenz, J.J., Patel, I.R., Wisely, G.B., Furdon, P.J., Taylor, J.D., et al.: A CRE/ATF-like site in the upstream regulatory sequence of the human interleukin 1 beta gene is necessary for the induction in U937 and THP-1 monocytic cell lines. Mol. Cell. Biol. 13, 6678–6689 (1993)

    PubMed  CAS  Google Scholar 

  63. Geppert, T.D., Whitehurst, C.E., Thompson, P., Beutler, B.: Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/ MAPK pathway. Mol. Med. 1, 93–103 (1994)

    PubMed  CAS  Google Scholar 

  64. Rousset, M., Cens, T., Van Mau, N., Charnet, P.: Ca2+-dependent interaction of BAPTA with phospholipids. FEBS Letters 576, 41–45 (2004)

    Article  PubMed  CAS  Google Scholar 

  65. Darveau, R.P.: Lipid A diversity and the innate host response to bacterial infection. Curr. Opin. Microbiol. 1, 36–42 (1998)

    Article  PubMed  CAS  Google Scholar 

  66. Dubois, M.J., Vincent, J.L.: Clinically-oriented therapies in sepsis: a review. J. Endotoxin. Res. 6, 463–469 (2000)

    PubMed  CAS  Google Scholar 

  67. Proctor, R.A., Will, J.A., Burhop, K.E., Raetz, C.R.H.: Protection of mice against lethal endotoxemia by a lipid A precursor. Infect. Immun. 52, 905–907 (1986)

    PubMed  CAS  Google Scholar 

  68. Christ, W.J., Asano, O., Robidoux, A.L., Perez, M., Wang, Y., Dubuc, G.R., Gavin, W.E., Hawkins, L.D., McGuinness, P.D., Mullarkey, M.A., et al.: E5531, a pure endotoxin antagonist of high potency. Science 268, 80–83 (1995)

    Article  PubMed  CAS  Google Scholar 

  69. Arend, W.P., Malyak, M., Guthridge, C.J., Gabay, C.: Interleukin-1 receptor antagonist; role in biology. Annu. Rev. Immunol. 16, 27–55 (1998)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Council, Taiwan, (NSC 92-2321-B-001-019 and 94-2311-B-001-045 to S-H Wu; NSC 93-2314-B-010-003 and 94-2120-M-010-002 to H-Y Hsu); National Health Research Institutes, Taiwan (NHRI-EX93-9211SI and support for the cost of reprints to H-Y Hsu); the Ministry of Education, Taiwan, on Program for Promoting Academic Excellence of Universities (A-91-B-FA09-2-4 to H-Y Hsu); a grant from Ministry of Education, Aim for the Top University Plan (95A-C-D01-PPG-10 to H-Y Hsu); Academia Sinica (Thematic project to H-Y Hsu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsien-Yeh Hsu or Shih-Hsiung Wu.

Additional information

Feng-Ling Yang and Kuo-Feng Hua equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, FL., Hua, KF., Yang, YL. et al. TLR-independent induction of human monocyte IL-1 by phosphoglycolipids from thermophilic bacteria. Glycoconj J 25, 427–439 (2008). https://doi.org/10.1007/s10719-007-9088-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9088-2

Keywords

Navigation