Skip to main content

Advertisement

Log in

Analysis of the Refined CRUST1.0 Crustal Model and its Gravity Field

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The global crustal model CRUST1.0 (refined using additional global datasets of the solid topography, polar ice sheets and geoid) is used in this study to estimate the average densities of major crustal structures. We further use this refined model to compile the gravity field quantities generated by the Earth’s crustal structures and to investigate their spatial and spectral characteristics and their correlation with the crustal geometry in context of the gravimetric Moho determination. The analysis shows that the average crustal density is 2,830 kg/m3, while it decreases to 2,490 kg/m3 when including the seawater. The average density of the oceanic crust (without the seawater) is 2,860 kg/m3, and the average continental crustal density (including the continental shelves) is 2,790 kg/m3. The correlation analysis reveals that the gravity field corrected for major known anomalous crustal density structures has a maximum (absolute) correlation with the Moho geometry. The Moho signature in these gravity data is seen mainly at the long-to-medium wavelengths. At higher frequencies, the Moho signature is weakening due to a noise in gravity data, which is mainly attributed to crustal model uncertainties. The Moho determination thus requires a combination of gravity and seismic data. In global studies, gravimetric methods can help improving seismic results, because (1) large parts of the world are not yet sufficiently covered by seismic surveys and (2) global gravity models have a relatively high accuracy and resolution. In regional and local studies, the gravimetric Moho determination requires either a detailed crustal density model or seismic data (for a combined gravity and seismic data inversion). We also demonstrate that the Earth’s long-wavelength gravity spectrum comprises not only the gravitational signal of deep mantle heterogeneities (including the core–mantle boundary zone), but also shallow crustal structures. Consequently, the application of spectral filtering in the gravimetric Moho determination will remove not only the gravitational signal of (unknown) mantle heterogeneities, but also the Moho signature at the long-wavelength gravity spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Airy GB (1855) On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Phil Trans Roy Soc (Lond) B 145:101–104

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA, technical memorandum, NESDIS, NGDC-24

  • Artemjev ME, Kaban MK, Kucherinenko VA, Demjanov GV, Taranov VA (1994) Subcrustal density inhomogeneities of the Northern Euroasia as derived from the gravity data and isostatic models of the lithosphere. Tectonophysics 240:248–280

    Google Scholar 

  • Bagherbandi M, Sjöberg LE (2012) Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Phys Earth Planet Inter 200–201:37–44

    Article  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Baudry N, Calmant S (1991) 3-D modeling of seamount topography from satellite altimetry. Geophys Res Lett 18:1143–1146

    Article  Google Scholar 

  • Bedle H, van der Lee S (2009) S velocity variations beneath North America. J Geophys Res 114:B07308

    Google Scholar 

  • Bowin C, Scheer E, Smith W (1986) Depth estimates from ratio of gravity, geoid and gravity gradient anomalies. Geophysics 51(1):123–136

    Article  Google Scholar 

  • Braitenberg C, Zadro M (1999) Iterative 3D gravity inversion with integration of seismologic data. Boll Geofis Teor Appl 40(3/4):469–476

    Google Scholar 

  • Braitenberg C, Wienecke S, Wang Y (2006) Basement structures from satellite-derived gravity field: South China Sea ridge. J Geophys Res 111:B05407

    Google Scholar 

  • Carlson RL, Raskin GS (1984) Density of the ocean crust. Nature 311:555–558

    Article  Google Scholar 

  • Cazenave A, Schaeffer P, Berge M, Brossier C (1996) High-resolution mean sea surface computed with altimeter data of ERS-1 (Geodetic Mission) and TOPEX-POSEIDON. Geophys J Int 125:696–704

    Article  Google Scholar 

  • Chen W, Tenzer R (2014) Harmonic coefficients of the Earth’s Spectral Crustal Model 180—ESCM180. Earth Sci Inf. doi:10.1007/s12145-014-0155-5

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100(B7):9761–9788

    Article  Google Scholar 

  • Coffin MF (1992) Emplacement and subsidence of Indian Ocean plateaus and submarine ridges. In: Duncan RA et al (ed) Synthesis of results from scientific drilling in the Indian Ocean. Geophysical Monograph, vol 70. AGU, Washington, DC, pp 115–126

  • Crough ST (1983) The correction for sediment loading on the seafloor. J Geophys Res 88(B8):6449–6454

    Article  Google Scholar 

  • Cutnell JD, Kenneth WJ (1995) Physics, 3rd edn. Wiley, New York

    Google Scholar 

  • Dixon TH, Naraghi M, McNutt MK, Smith SM (1983) Bathymetric prediction from Seasat altimeter data. J Geophys Res 88:1563–1571

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Dziewonski AM, Hales AL, Lapwood ER (1975) Parametrically simple Earth models consistent with geophysical data. Phys Earth Planet Inter 10:12

    Article  Google Scholar 

  • Eckhardt DH (1983) The gains of small circular, square and rectangular filters for surface waves on a sphere. Bull Geod 57:394–409

    Article  Google Scholar 

  • Gladkikh V, Tenzer R (2012) A mathematical model of the global ocean saltwater density distribution. Pure App Geophys 169:249–257

    Article  Google Scholar 

  • Grand SP (2002) Mantle shear-wave tomography and the fate of subducted slabs. Phil Trans R Soc Lond 360:2475–2491

    Article  Google Scholar 

  • Grand SP, van der Hilst RD, Widiyantoro S (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today 1:1–7

  • Gung Y, Romanowicz B (2004) Q tomography of the upper mantle using three-component long-period waveforms. Geophys J Int 157:813–830

    Article  Google Scholar 

  • Hammer S (1963) Deep gravity interpretation by stripping. Geophysics 28:369–378

    Article  Google Scholar 

  • Hayes DE (1988) Age-depth relationships and depth anomalies in the southeast Indian Ocean and South Atlantic Ocean. J Geophys Res 93(B4):2937–2954

    Article  Google Scholar 

  • Heiskanen WH, Moritz H (1967) Physical geodesy. WH Freeman and Co, San Francisco

    Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560

    Article  Google Scholar 

  • Houser C, Masters G, Shearer P, Laske G (2008) Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys J Int 174:195–212

    Article  Google Scholar 

  • James DE, Fouch MJ, Carlson RW, Roth JB (2011) Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet Sci Lett 311(1):124–135

    Article  Google Scholar 

  • Jung WY, Vogt PR (1992) Predicting bathymetry from Geosat-ERM and shipborne profiles in the South Atlantic ocean. Tectonophysics 210:235–253

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Artemieva IM, Mooney WD (2003) Density of the continental roots: compositional and thermal contributions. Earth Planet Sci Lett 209:53–69

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Reigber Ch (2004) A new isostatic model of the lithosphere and gravity field. J Geod 78:368–385

    Article  Google Scholar 

  • Kane KA, Hayes DE (1992) Tectonic corridors in the South Atlantic: evidence for long-lived mid-ocean ridge segmentation. J Geophys Res 97(12):17,317–17330

    Article  Google Scholar 

  • Kaula WM (1969) Earth’s gravity field, relation to global tectonics. Science 169:982–985

    Article  Google Scholar 

  • Kaula WM (1972) Global gravity and tectonics. In: Robertson EC (ed) The nature of the solid Earth. McGraw-Hill, New York, pp 385–405

    Google Scholar 

  • Kennett BLN, Engdahl ER (1991) Travel times for global earthquake location and phase association. Geophys J Int 105:429–465

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from travel times. Geophys J Int 122:108–124

    Article  Google Scholar 

  • Kustowski B, Ekstrm G, Dziewoski AM (2008a) The shear-wave velocity structure in the upper mantle beneath Eurasia. Geophys J Int 174:978–992

    Article  Google Scholar 

  • Kustowski B, Ekstrom G, Dziewonski AM (2008b) Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J Geophys Res 113:B06306

    Google Scholar 

  • Lambeck K (1971) Comparison of surface gravity data with satellite data. Bull Geod 100:203–219

    Article  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos ME (2012) CRUST1.0: An updated global model of Earth’s crust. Geophys Res Abs 14, EGU2012-3743-1, EGU General Assembly 2012

  • Le Pichon X, Talwani M (1969) Regional gravity anomalies n the Indian Ocean. Deep Sea Res 16:263–274

    Google Scholar 

  • Lekic V, Romanowicz B (2011) Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophys J Int 185(2):799–831

    Article  Google Scholar 

  • Makhloof AA (2007) The use of topographic-isostatic mass information in geodetic application. Dissertation D98, Institute of Geodesy and Geoinformation, Bonn

  • Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03 s. Abstract, GGHS2012, Venice

  • Megnin Ch, Romanowicz B (2000) The shear velocity structure of the mantle from the inversion of of body, surface and higher modes waveforms. Geophys J Int 143:709–728

    Article  Google Scholar 

  • Montagner JP, Kennett BLN (1995) How to reconcile body-wave and normal-mode reference Earth models? Geophys J Int 125:229–248

    Article  Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: a global crustal model at 5° × 5°. J Geophys Res 103B:727–747

    Article  Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162

    Article  Google Scholar 

  • Nataf HC, Ricard Y (1996) 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling. Phys Earth Planet Int 95:101–122

  • Novák P (2010) High resolution constituents of the Earth gravitational field. Surv Geoph 31(1):1–21

    Article  Google Scholar 

  • Obrebski M, Allen RM, Xue M, Hung S-H (2010) Slab-plume interaction beneath the Pacific Northwest. Geophys Res Lett 37:L14305

    Google Scholar 

  • Obrebski M, Allen RM, Pollitz F, Hung S-H (2011) Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave travel times and surface-wave phase velocities. Geophys J Int 185:1003–1021

    Article  Google Scholar 

  • Panning MP, Romanowicz BA (2006) A three dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys J Int 167:361–379

    Article  Google Scholar 

  • Panning MP, Lekic V, Romanowicz BA (2010) Importance of crustal corrections in the development of a new global model of radial anisotropy. J Geophys Res 115:B12325

    Article  Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of the ocean floor bathymetry and heat flow with age. J Geophys Res 82:803–827

    Article  Google Scholar 

  • Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Kiliçoglu A, Forsberg R (eds) Gravity field of the earth. Proceedings of the 1st international symposium of the international gravity field service (IGFS), Harita Dergisi, special issue, 18, General Command of Mapping, Ankara, Turkey

  • Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242

    Article  Google Scholar 

  • Peltier WR (2007) Mantle dynamics and the D-double prime layer implications of the post-perovskite phase. In: Hirose K, Brodholt J, Lay T, Yuen D (eds) Post-perovskite: the last mantle phase transition, vol 174. AGU Geophysical Monograph, American Geophysics Union, pp 217–227

  • Phillips R, Lambeck K (1980) Gravity fields of the terrestrial planets: long-wavelength anomalies and tectonics. Rev Geophys Space Phys 18:27–76

    Article  Google Scholar 

  • Porritt RW, Allen RM, Boyarko DC, Brudzinski MR (2011) Investigation of Cascadia segmentation with ambient noise tomography. Earth Planet Sci Lett 309(1–2):67–76

    Article  Google Scholar 

  • Pratt JH (1855) On the attraction of the Himalaya Mountains and of the elevated regions beyond upon the plumb-line in India. Trans Roy Soc (Lond) B 145:101–104

  • Renkin MA, Sclater JG (1988) Depth and age in the North Pacific. J Geophys Res 93(B4):2919–2935

    Article  Google Scholar 

  • Rogers N, Blake S, Burton K (2008) An introduction to our dynamic planet. Cambridge University Press, Cambridge

    Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10,039–10054

    Article  Google Scholar 

  • Sclater JG, Anderson RN, Bell ML (1971) The elevation of the ridges and the evolution of the central eastern Pacific. J Geophys Res 76:7883–7915

    Google Scholar 

  • Sclater JG, Hellinger S, Tapscott C (1977) The paleobathymetry of the Atlantic Ocean from the Jurassic to the present. J Geol 85:509–552

    Article  Google Scholar 

  • Sclater JG, Meinke L, Bennett A, Murphy C (1985) The depth of the ocean through the Neogene. In: Kennett JP (ed) The Miocene Ocean, Geol Sot Am, pp 1–19

  • Simmons NA, Forte AM, Boschi L, Grand SP (2010) GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J Geophys Res 115:B12310

    Article  Google Scholar 

  • Simmons NA, Myers SC, Johannesson G, Matzel E (2012) LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction. J Geophys Res 117:B10302

    Google Scholar 

  • Sjöberg LE (2009) Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys J Int 179(3):1527–1536

    Article  Google Scholar 

  • Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys 58:1–24

    Google Scholar 

  • Smith WHF (1993) On the accuracy of digital bathymetry data. J Geophys Res 98:9591–9603

    Article  Google Scholar 

  • Sykes TJS (1996) A correction for sediment load upon the ocean floor: uniform versus varying sediment density estimations—implications for isostatic correction. Mar Geol 133:1–2:35–49

  • Talwani M (1970) Gravity. In: Maxwell AE (ed) The Sea 4(1). Wiley Interscience, New York, pp 251–297

    Google Scholar 

  • Talwani M, Pichon X, Le (1969) Gravity field over the Atlantic Ocean. In: Hart PJ (ed) The Earth’s crust and upper mantle, Monograph 12, American Geophysical Union, pp 341–351

  • Tenzer R, Gladkikh V (2014) Assessment of density variations of marine sediments with ocean and sediment depths. Sci World J ID 823296, p 9. doi:10.1155/2014/823296

  • Tenzer R, Hamayun, Vajda P (2009a) Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J Geophys Res 114:BO5408

    Article  Google Scholar 

  • Tenzer R, Vajda P, Hamayun (2009b) Global atmospheric corrections to the gravity field quantities. Contr Geophys Geod 39(3):221–236

    Google Scholar 

  • Tenzer R, Hamayun, Vajda P (2009c) A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST 2.0 Moho boundary. Contrib Geophys Geod 39(2):133–147

  • Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012a) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207

    Article  Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geoph 33(5):817–839

    Article  Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2012c) The bathymetric stripping corrections to gravity field quantities for a depth-dependant model of the seawater density. Mar Geod 35:198–220

    Article  Google Scholar 

  • Tenzer R, Hamayun, Novák P, Gladkikh V, Vajda P (2012c) Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl Geophys 169(9):1663–1678

  • Trabant C, Hutko AR, Bahavar M, Karstens R, Ahern T, Aster R (2012) Data products at the IRIS DMC: stepping-stones for research and other application, Seism Res Lett 83(6):846:854

  • Tsoulis D (2004a) Spherical harmonic analysis of the CRUST2.0 global crustal model. J Geod 78(1/2):7–11

  • Tsoulis D (2004b) Two Earth gravity models from the analysis of global crustal data. Zeitschrift für Vermessungswesen 129(5):311–316

    Google Scholar 

  • Turcotte D, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • van der Lee S, Frederiksen A (2005) Surface wave tomography applied to the North American upper mantle. In: Levander A, Nolet G (eds) AGU monograph, seismic earth: array analysis of broadband seismograms, pp 67–80

  • van der Lee S, Nolet G (1997) Upper mantle S-velocity structure of North America. J Geophys Res 102:22815–22838

    Article  Google Scholar 

  • van Gelderen M, Koop R (1997) The use of degree variances in satellite gradiometry. J Geod 71:337–343

    Article  Google Scholar 

  • Wang T, Lin J, Tucholke B, Chen YJ (2011) Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochem Geophys Geosyst 2:Q0AE02

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Wessel P, Watts AB (1988) On the accuracy of marine gravity measurements. J Geophys Res 93:393–413

  • Wienecke S, Braitenberg C, Götze H-J (2007) A new analytical solution estimating the flexural rigidity in the Central Andes. Geophys J Int 169(3):789–794

    Article  Google Scholar 

  • Wild F, Heck B (2004) Effects of topographic and isostatic masses in satellite gravity gradiometry. In: Proceedings, second international GOCE user workshop GOCE. The geoid and oceanography, ESA-ESRIN, Frascati, Italy, March 8–10, 2004 (ESA SP—569, June 2004), CD-ROM

  • Williams DL (1975) On the thermal evolution of the oceanic lithosphere. Geophys Res Lett 2:321–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenzer, R., Chen, W., Tsoulis, D. et al. Analysis of the Refined CRUST1.0 Crustal Model and its Gravity Field. Surv Geophys 36, 139–165 (2015). https://doi.org/10.1007/s10712-014-9299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9299-6

Keywords

Navigation