Skip to main content

Advertisement

Log in

Present State and Prospects of Ice Sheet and Glacier Modelling

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Since the late 1970s, numerical modelling has become established as an important technique for the understanding of ice sheet and glacier dynamics, and several models have been developed over the years. Ice sheet models are particularly relevant for predicting the possible response of ice sheets to climate change. Recent observations suggest that ice dynamics could play a crucial role for the contribution of ice sheets to future sea level rise under global warming conditions, and the need for further research into the matter was explicitly stated in the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC). In this paper, we review the state of the art and current problems of ice sheet and glacier modelling. An outline of the underlying theory is given, and crucial processes (basal sliding, calving, interaction with the solid Earth) are discussed. We summarise recent progress in the development of ice sheet and glacier system models and their coupling to climate models, and point out directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe-Ouchi A, Blatter H (1993) On the initiation of ice sheets. Ann Glaciol 18:203–207

    Google Scholar 

  • Abe-Ouchi A, Segawa T, Saito F (2007) Climatic conditions for modelling the northern hemisphere ice sheets through the ice age cycle. Clim Past 3:423–438

    Article  Google Scholar 

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions with formulars, graphs, and mathematical tables. Dover Publications, New York

    Google Scholar 

  • Alley RB (1992) Flow-law hypotheses for ice-sheet modeling. J Glaciol 38(129):245–256

    Google Scholar 

  • Anandakrishnan S, Catania GA, Alley RB, Horgan HJ (2007) Theoretical limitations to englacial velocity calculations. Science 315:1835–1841

    Article  Google Scholar 

  • Arthern RJ, Gudmundsson GH (2010) Initialization of ice-sheet forecast viewed as an inverse Robin problem. J Glaciol 56(197):527–533

    Article  Google Scholar 

  • Arthern RJ, Hindmarsh RCA (2006) Determining the contribution of Antarctica to sea-level rise using data assimilation methods. Phil Trans R Soc A 364:1841–1865

    Article  Google Scholar 

  • Bahr DB, Pfeffer WT, Meier MF (1994) Theoretical limitations to englacial velocity calculations. J Glaciol 40(136):509–518

    Google Scholar 

  • Benn DI, Hulton NRJ, Mottram R (2007) ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers. Ann Glaciol 46:123–130

    Article  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 385–432, http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Blatter H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J Glaciol 41(138):333–344

    Google Scholar 

  • Box JE, Bromwich DH, Veenhuis BA, Bai L, Stroeve JC, Rogers JC, Steffen K, Haran T, Wang S (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. J Clim 19:2783–2800

    Article  Google Scholar 

  • Brotchie JF, Silvester R (1969) On crustal flexure. J Geophys Res 74(22):5240–5252

    Article  Google Scholar 

  • Bueler E (2008) Lessons from the short history of ice sheet model intercomparison. Cryosphere Discuss 2:399–412

    Article  Google Scholar 

  • Bueler E, Brown J (2009) Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. J Geophys Res 114:F03008. doi:10.1029/2008JF001179

    Article  Google Scholar 

  • Bueler E, Kallen-Brown JA, Lingle C (2005) Exact solutions and the verification of numerical models for ice sheets. Poster, EGU General Assembly, Vienna, Austria http://www.gi.alaska.edu/snowice/glaciers/iceflow/EGUposter.png

  • Bueler E, Brown J, Lingle C (2006) Verifying thermocoupled ice sheet models (and explaining the ”warm spokes”). Presentation, 13th West Antarctic ice sheet workshop, Pack Forest, Washington http://www.gi.alaska.edu/snowice/glaciers/iceflow/Bueler_WAIS06.pdf

  • Bueler E, Khroulev C, Aschwanden A, Joughin I, Smith BE (2010) Modeled and observed fast flow in the Greenland ice sheet. Poster, EGU General Assembly, Vienna, Austria http://www.gi.alaska.edu/snowice/glaciers/iceflow/posterBKAJS.pdf

  • Calov R, Hutter K (1996) The thermomechanical response of the Greenland ice sheet to various climate scenarios. Clim Dyn 12:243–260

    Article  Google Scholar 

  • Calov R, Greve R, Abe-Ouchi A, Bueler E, Huybrechts P, Johnson JV, Pattyn F, Pollard D, Ritz C, Saito F, Tarasov L (2010) Results from the ice-sheet model intercomparison project—Heinrich event intercomparison (ISMIP HEINO). J Glaciol 56(197):371–383

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of PRUDENCE model projection of changes in european climate by the end of theis century. Clim Change 81:7–30

    Article  Google Scholar 

  • Clausen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586

    Article  Google Scholar 

  • Cuffey KM, Paterson WSB (2010) The physics of glaciers, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Durand G, Gagliardini O, de Fleurian B, Zwinger T, Le Meur E (2009a) Marine ice sheet dynamics: hysteresis and neutral equilibrium. J Geophys Res 114(F3):F03009. doi:10.1029/2008JF001170

  • Durand G, Gagliardini O, Zwinger T, Le Meur E, Hindmarsh RCA (2009b) Full Stokes modeling of marine ice sheets: influence of the grid size. Ann Glaciol 50(52):109–114

    Article  Google Scholar 

  • Fowler AC (2001) Modelling the flow of glaciers and ice sheets. In: Straughan B, Greve R, Ehrentraut H, Wang Y (eds) Continuum mechanics and applications in geophysics and the environment. Springer, Berlin, pp 201–221

    Google Scholar 

  • Frei C, Calanca P, Schär C, Wanner H, Schädler B, Haeberli W, Appenzeller C, Neu U, Thalmann E, Ritz C, Hohmann R (2007) Die Klimazukunft der Schweiz. In: Klimaänderung und die Schweiz 2050—Erwartete Auswirkungen auf Umwelt, Gesellschaft und Wirtschaft, Beratendes Organ für Fragen der Klimaänderung OcCC, pp 12–16. http://www.occc.ch

  • Gagliardini O, Gillet-Chaulet F, Montagnat M (2009) A review of anisotropic polar ice models: from crystal to ice-sheet flow models. Low Temp Sci 68(Suppl.):149–166

    Google Scholar 

  • Gagliardini O, Durand G, Zwinger T, Hindmarsh RCA, Le Meur E (2010) Coupling of ice-shelf melting and buttressing is a key process in ice-sheet dynamics. Geophys Res Lett 37(L14501). doi:10.1029/2010GL043334

  • Ganopolski A, Calov R, Claussen M (2010) Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim Past 6:229–244

    Article  Google Scholar 

  • Gladstone RM, Lee V, Vieli A, Payne AJ (2009) Grounding line migration in an adaptive mesh ice sheet model. J Geophys Res 115(F04014). doi:10.1029/2009JF001615

  • Goldberg DN, Holland DM, Schoof CG (2009) Grounding line movement and ice shelf buttressing in marine ice sheets. J Geophys Res 114(F04026). doi:10.1029/2008JF001227

  • Goldsby DL, Kohlstedt DL (2001) Superplastic deformation of ice: experimental observations. J Geophys Res 106(B6):11017–11030

    Article  Google Scholar 

  • Greve R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J Clim 10(5):901–918

    Article  Google Scholar 

  • Greve R (2000) On the response of the Greenland ice sheet to greenhouse climate change. Clim Change 46(3):289–303

    Article  Google Scholar 

  • Greve R, Blatter H (2009) Dynamics of ice sheets and glaciers. Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin

  • Grosfeld K, Sandhäger H (2004) The evolution of a coupled ice shelf-ocean system under different climate states. Global Planet Change 42:107–132

    Article  Google Scholar 

  • Gudmundsson GH (1994a) Convergent glacier flow and perfect sliding over a sinusoidal bed. PhD thesis, ETH Zürich, no. 10711

  • Gudmundsson GH (1994b) Glacier sliding over sinusoidal bed and the characteristics of creeping flow over bedrock undulations. Mitteilung 130, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich

  • Gudmundsson GH (1999) A three-dimensional numerical model of the confluence area of unteraargletscher, bernese alps, switzerland. J Glaciol 45(150):219–230

    Article  Google Scholar 

  • Gudmundsson GH (2003) Transmission of basal variability to a glacier surface. J Geophys Res 108:B42253. doi:10.1029/2002JB002107

    Article  Google Scholar 

  • Gudmundsson GH (2008) Analytical analysis of small-amplitude perturbations in the shallow ice stream approximation. Cryosphere Discuss 2:23–74

    Article  Google Scholar 

  • Heimbach P, Bugnion V (2009) Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model. Ann Glaciol 50(52):67–80

    Article  Google Scholar 

  • Hindmarsh RCA (2004) A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J Geophys Res 109:F01,012

    Article  Google Scholar 

  • Hindmarsh RCA (2006) Paradoxes and problems with the longitudinal stress approximations used in glacier mechanics. GAMM-Mitt 29(1):52–79

    Google Scholar 

  • Hindmarsh RCA (2006) The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheet: back pressure and grounding line motion. Phil Trans R Soc A 364:1733–1767

    Article  Google Scholar 

  • Hock R (1999) A distributed temperature-index ice and snowmelt model including potential direct solar radiation. J Glaciol 45(149):101–111

    Google Scholar 

  • Hofer M, Mölg T, Marzeion B, Kaser G (2010) Empirical-statistical downscaling of reanalysis data to high-resolution air temperature and specific humidity above a glacier surface (Cordilliera Blanca, Peru). J Geophys Res D12120. doi:10.1029/2009JD012556

  • Hooke RL (2005) Principles of glacier mechanics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Horgan HJ, Anandakrishnan S (2006) Static grounding lines and dynamic ice streams: evidence from the Siple Coast, West Antarctica. Geophys Res Lett 33:L18502

    Article  Google Scholar 

  • Hutter K (1983) Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Huybrechts P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Clim Dyn 5:79–92

    Google Scholar 

  • Huybrechts P (1996) Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Ann Glaciol 23:226–236

    Google Scholar 

  • Huybrechts P, Payne T, the EISMINT Intercomparison Group (1997) The EISMINT benchmarks for testing ice-sheet models. Annals Glaciol 23:1–12

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Jenkins A, Bombosch A (1995) Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. J Geophys Res 100:6967–6981

    Article  Google Scholar 

  • Joughin I, MacAyeal D (2005) Calving of large tabular icebergs from ice rift systems. Geophys Res Lett 32:L02, 501

    Google Scholar 

  • Joughin I, Howat IM, Fahnestock M, Smith B, Krabill W, Alley RB, Stern H, Truffer M (2008) Continued evolution of Jakobshavn Isbrae following its rapid speedup. J Geophys Res 113:F04,006

    Google Scholar 

  • Jouvet G (2010) Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers. PhD thesis, Ecole Polytechnique Fédérale de Lausanne

  • Jouvet G, Picasso M, Rappaz J, Blatter H (2008) A new algorithm to simulate the dynamics of a glacier: theory and applications. J Glaciol 54(188):801–811

    Article  Google Scholar 

  • Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulations of Rhohnegletscher from 1874 to 2100. J Comp Phys 228:6426–6439

    Article  Google Scholar 

  • Kachanov LM (1999) Rupture time under creep conditions. Int J Fract 97(1–4):xi–xviii (translation from Izv. Akad. Nauk. SSSR, Itd. Tekh. Nauk. Metall. Topl., 8, 26–31, 1957)

    Google Scholar 

  • Krajcinovic D (1996) Damage mechanics. Elsevier, New york

    Google Scholar 

  • Krimmel RM (2001) Photogrammetric data set, 1957–2000, and bathymetric measurements for Columbia Glacier, Alaska. Water Resour. Invest. Rep. 014089, U.S. Geol. Surv

  • Lambeck K, Johnston P, Nakada M (1990) Holocene glacial rebound and sea-level change in NW Europe. Geophys J Int 103:451–468

    Article  Google Scholar 

  • Langdon TG (1996) Transitions in creep behavior. Mater Trans Jpn Inst Metal 37(3):359–362

    Google Scholar 

  • Le Meur E (1996) Isostatic postglacial rebound over Fennoscandia with a self-gravitating spherical visco-elastic Earth model. Ann Glaciol 23:318–327

    Google Scholar 

  • Le Meur E, Huybrechts P (1996) A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Ann Glaciol 23:309–317

    Google Scholar 

  • Le Meur E, Huybrechts P (2001) A model computation of the temporal changes of surface gravity and geoidal signal induced by the evolving Greenland ice sheet. Geophys J Int 145:835–849

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 337–383. http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Lewis EL, Perkin RG (1986) Ice pumps and their rates. J Geophys Res 91(C10):11756–11762

    Article  Google Scholar 

  • Lüthi M, Funk M (2000) Dating ice cores from a high Alpine glacier with a flow model for cold firn. Ann Glaciol 31:69–79

    Article  Google Scholar 

  • Marguerre K, Woernle HT (1969) Elastic plates. Blaisdell Publishing Company, Waltham

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, P F, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845. http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Morland LW (1984) Thermomechanical balances of ice sheet flows. Geophys Astrophys Fluid Dyn 29:237–266

    Article  Google Scholar 

  • Morland LW (1987) Unconfined ice-shelf flow. In: Veen CJ, Oerlemans J (eds) Dynamics of the West Antarctic ice sheet. D. Reidel Publishing Company, Dordrecht, pp 99–116

    Chapter  Google Scholar 

  • Murray AB (2002) Seeking explanation affects numerical modeling strategies. EOS Trans AGU 83:418–419

    Article  Google Scholar 

  • Nick FM, van der Veen CJ, Oerlemans J (2007) Controls on advance of tidewater glaciers: results from numerical modeling applied to Columbia Glacier. J Geophys Res 112:F03S24. doi:10.1029/2006JF000551

    Article  Google Scholar 

  • Nick FM, van der Veen CJ, Vieli A, Benn DI (2010) A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. J Glaciol 56(199):781–794

    Article  Google Scholar 

  • Nøst OA, Foldvik A (1994) A model of ice shelf-ocean interaction with application to the Filchner-Ronne and Ross ice shelves. J Geophys Res 99(C7):14243–14254

    Article  Google Scholar 

  • Nye JF (1957) The distribution of stress and velocity in glaciers and ice-sheets. Proc R Soc Lond Ser A 239(1216):113–133

    Article  Google Scholar 

  • Ohmura A (2010) Mass balance of glaciers and ice sheets during the observational period and climate change (in japanese). J Geogr Tokyo Geogr Soc 119(3):466–481

    Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  • Otero J, Navarro FJ, Martin C, Cuadrado ML, Corcuera MI (2010) A three-dimensional calving model: numerical experiments on Johnsons Glacier, Livingston Island, Antarctica. J Glaciol 56(196):200–214

    Article  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Pattyn F (2008) Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J Glaciol 54(185):353–361

    Article  Google Scholar 

  • Pattyn F et al (2007) Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). Cryophere 2:95–108. doi:10.5194/tc-2-95-2008

    Article  Google Scholar 

  • Payne AJ, Baldwin DJ (2000) Analysis of ice-flow instabilities identified in the EISMINT intercomparison exercise. Annals Glaciol 30:204–210

    Article  Google Scholar 

  • Payne AJ, Dongelmans PW (1997) Self-organization in the thermomechanical flow of ice sheets. J Geophys Res 102(B6):12219–12233

    Article  Google Scholar 

  • Payne AJ, Huybrechts P, Abe-Ouchi A, Calov R, Fastook JL, Greve R, Marshall S, Marsiat I, Ritz C, Tarasov L, Thomassen MPA (2000) Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J Glaciol 46(153):227–238

    Article  Google Scholar 

  • Payne AJ, Vieli A, Shepherd AP, Wingham DJ, Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys Res Lett 31:L23, 401

    Article  Google Scholar 

  • Pettit EC, Waddington ED (2003) Ice flow at low deviatoric stress. J Glaciol 49(166):359–369

    Article  Google Scholar 

  • Pralong A, Funk M (2005) Dynamic damage model of crevasse opening and application to glacier calving. J Geophys Res 110:B01309. doi:10.1029/2004JB003104

    Article  Google Scholar 

  • Pralong A, Funk M, Lüthi MP (2003) A description of crevasse formation using continuum damage mechanics. Ann Glaciol 37:77–82

    Article  Google Scholar 

  • Pralong A, Hutter K, Funk M (2006) Anisotropic damage mechanics for viscoelastic ice. Cont Mech Thermodyn 17(5):387–408. doi:10.1007/s00161-005-0002-5

    Article  Google Scholar 

  • Ridley JK, Gregory JM, Huybrechts P, Lowe JA (2009) Thresholds for irreversible decline of the Greenland ice sheet. Clim Dyn. doi:10.1007/s00382-009-0646-0

  • Rignot E, Steffen K (2008) Channelized bottom melting and stability of floating ice shelves. Geophys Res Lett 35:L02,503

    Google Scholar 

  • Ritz C (1987) Time dependent boundary conditions for calculation of temperature fields in ice sheets. In: Waddington ED, Walder JS (eds) The physical basis of ice sheet modelling. IAHS Publication No. 170, IAHS Press, Wallingford, pp 207–216

    Google Scholar 

  • Ritz C, Fabre A, Letréguilly A (1997) Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last climatic cycle. Clim Dyn 13(1):11–24

    Article  Google Scholar 

  • Ritz C, Rommelaere V, Dumas C (2001) Modeling the evolution of Antarctic ice sheet over the last 420,000 years: implications for altitude changes in the Vostik region. J Geophys Res 106(D23):31943–31964

    Article  Google Scholar 

  • Rogozhina I, Martinec Z, Hagedorn JM, Thomas M (2011) On the long-term memory of the Greenland ice sheet. J Geophys Res 116:F01011. doi:10.1029/2010JF001787

    Article  Google Scholar 

  • Saito F, Abe-Ouchi A (2004) Thermal structure of Dome Fuji and east Dronning Maud Land, Antarctica, simulated by a three-dimensional ice-sheet model. Ann Glaciol 39:433–438

    Article  Google Scholar 

  • Saito F, Abe-Ouchi A, Blatter H (2006) European ice sheet modelling initiative (EISMINT) model intercomparison experiments with first order mechanics. J Geophys Res 111:F02012

    Article  Google Scholar 

  • Scambos T, Fricker HA, Liu C, Bohlander J, Fastook J, Sargent A, Massom R, Wu A (2009) Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-up. Earth Planet Sci Lett 280:51–60

    Article  Google Scholar 

  • Schneeberger C, Albrecht O, Blatter H, Wild M, Hock R (2001) Modelling the response of glaciers to a doubling in atmospheric CO2: a case study on Storglaciären, northern Sweden. Clim Dyn 17(11):825–834

    Article  Google Scholar 

  • Schneeberger C, Blatter H, Abe-Ouchi A, Wild M (2003) Modelling changes in the mass balance of glaciers of the northern hemisphere for a transient 2xCO2 scenario. J Hydrol 282(1-4):145–163

    Article  Google Scholar 

  • Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res 112:F03S28. doi:10.1029/2006JF000664

    Article  Google Scholar 

  • Schoof C, Hindmarsh RCA (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow. Q J Mech Appl Math 63(1):73–114. doi:10.1093/qjmam/hbp025

    Article  Google Scholar 

  • Smedsrud LH, Jenkins A (2004) Frazil ice formation in an ice shelf water plume. J Geophys Res 109:C03, 025

    Article  Google Scholar 

  • Tarasov L, Peltier WR (2002) Greenland glacial history and local geodynamic consequences. Geophys J Int 150(1):198–229

    Article  Google Scholar 

  • Thoma M, Wolf D (1999) Bestimmung der Mantelviskosität aus Beobachtungen der Landhebung und Schwere in Fennoskandien. Scientific Technical Report STR99/02, GeoForschungsZentrum Potsdam, Germany

  • Thompson DE (1995) Verification, validation, and solution quality in computational physics: Cfd methods applied to ice sheet physics. Tech. rep., NASA/TM-2005-213453, NASA, Ames Research Center

  • Truffer M (2004) The basal speed of valley glaciers: an inverse approach. J Glaciol 50(169):236–242

    Article  Google Scholar 

  • Vander Veen CJ (1996) Tidewater calving. J Glaciol 42:375–385

    Google Scholar 

  • Verbitsky M (2002) Siple coast ice streams in a General Antarctic ice sheet model. J Clim 18:2194–2198

    Article  Google Scholar 

  • Vieli A, Payne AJ (2003) Application of control methods for modelling the flow of Pine Island Glacier, West Antarctica. Ann Glaciol 36:197–204

    Article  Google Scholar 

  • Vieli A, Payne AJ (2005) Assessing the ability of numerical ice sheet models to simulate grounding line migration. J Geophys Res 110:1815–1839. doi:10.1029/2004JF000202

    Article  Google Scholar 

  • Vieli A, Funk M, Blatter H (2000) Tidewater glaciers: frontal flow acceleration and basal sliding. Ann Glaciol 31:217–221

    Article  Google Scholar 

  • Vieli A, Funk M, Blatter H (2001) Flow dynamics of tidewater glaciers: a numerical modelling approach. J Glaciol 47(159):595–606

    Article  Google Scholar 

  • Vieli A, Jania J, Kolondra L (2002) The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. J Glaciol 48(163):592–600

    Article  Google Scholar 

  • Vieli A, Payne AJ, Du Z, Shepherd A (2006) Numerical modelling and data assimilation of the Larson B ice shelf, Antarctic Peninsula. Phil Trans R Soc A 364:F01003. doi:10.1098/rsta.2006.1800

    Article  Google Scholar 

  • Vizcaíno M, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Winguth AME (2008) Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model. Climate Dyn 31(6):665–690. doi:10.1007/s00382-008-0369-7

    Article  Google Scholar 

  • Walker RT, Dupont TK, Parizek BR, Alley RB (2008) Effect of basal-melting distribution on the retreat of ice-shelf grounding lines. Geophys Res Lett 35(L17503). doi:10.1029/2008GL034947

  • Walker RT, Dupont TK, Holland DM, Parizek BR, Alley RB (2009) Initial effects of oceanic warming on a coupled ocean-ice shelf-ice stream system. Earth Planet Sci Lett 287:483–487

    Article  Google Scholar 

  • Weertman J (1957) On the sliding of glaciers. J Glaciol 3(21):33–38

    Google Scholar 

  • Weertman J (1964) The theory of glacier sliding. J Glaciol 5(39):287–303

    Google Scholar 

  • Weertman J (1971) In defence of a simple model of glacier sliding. J Geophys Res 76(26):6485–6487

    Article  Google Scholar 

  • Weis M, Greve R, Hutter K (1999) Theory of shallow ice shelves. Continuum Mech Thermodyn 11(1):15–50

    Article  Google Scholar 

  • Zwinger T, Moore JC (2009) Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard. Cryosphere 3:217–229

    Article  Google Scholar 

  • Zwinger T, Greve R, Gagliardini O, Shiraiwa T, Lyly M (2007) A full-Stokes thermo-mechanical model for firn and ice applied to the Gorshkov crate glacier, Kamchatka. Ann Glaciol 45:29–37

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Lennart Bengtsson (Director Earth Science, International Space Science Institute, Bern, Switzerland) for the kind invitation to submit this review paper to Surveys in Geophysics. Scientific editor Prof. Johannes Oerlemans (Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands) and two anonymous reviewers provided useful comments for improving the paper. Dr. Tracy Ewen (Department of Geography, University of Zurich, Switzerland) proofread the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Blatter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatter, H., Greve, R. & Abe-Ouchi, A. Present State and Prospects of Ice Sheet and Glacier Modelling. Surv Geophys 32, 555–583 (2011). https://doi.org/10.1007/s10712-011-9128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9128-0

Keywords

Navigation