Skip to main content
Log in

Gorenstein spherical Fano varieties

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We obtain a combinatorial description of Gorenstein spherical Fano varieties in terms of certain polytopes, generalizing the combinatorial description of Gorenstein toric Fano varieties by reflexive polytopes and its extension to Gorenstein horospherical Fano varieties due to Pasquier. Using this description, we show that the rank of the Picard group of an arbitrary \(d\)-dimensional \(\mathbb {Q}\)-factorial Gorenstein spherical Fano variety is bounded by \(2d\). This paper also contains an overview of the description of the natural representative of the anticanonical divisor class of a spherical variety due to Brion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\(\mathfrak {X}(G)\) :

character lattice of a connected algebraic group \(G\)

\(Q^*\) :

dual polytope to a polytope \(Q\) in a vector space \(V\), i. e. \(Q^* = \{ v \in V^* : \langle u, v \rangle \ge -1\) for every \(u \in Q\}\)

\(\widehat{F}\) :

dual face to a face \(F\) of a polytope \(Q\), i. e. \(\widehat{F} := \{ v \in Q^* : \langle u, v \rangle = -1\) for every \(u \in F\}\)

\(\mathrm {int}(A)\) :

topological interior of a subset \(A\) in some finite-dimensional vector space

\(\mathrm {relint}(A)\) :

relative interior of a subset \(A\) in some finite-dimensional vector space, i. e. topological interior of \(A\) in the affine span of \(A\)

References

  1. Alexeev, V., Brion, M.: Boundedness of spherical Fano varieties, The Fano Conference, pp. 69–80. Univ. Torino, Turin (2004)

    Google Scholar 

  2. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493–535 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397–424 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brion, M.: Vers une généralisation des espaces symétriques. J. Algebra 134(1), 115–143 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brion, M.: Variétés sphériques et théorie de Mori. Duke Math. J. 72(2), 369–404 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brion, M.: Curves and Divisors in Spherical Varieties, Algebraic Groups and Lie Groups, pp. 21–34. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

  7. Brion, M.: The total coordinate ring of a wonderful variety. J. Algebra 313(1), 61–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Casagrande, C.: The number of vertices of a Fano polytope. Ann. Inst. Fourier (Grenoble) 56(1), 121–130 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Debarre, O.: Fano varieties, Higher Dimensional Varieties and Rational Points (Budapest, 2001). Springer, Berlin (2003)

    Google Scholar 

  10. Demazure, M.: Une démonstration algébrique d’un théorème de Bott. Invent. Math. 5, 349–356 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  11. Demazure, M.: A very simple proof of Bott’s theorem. Invent. Math. 33(3), 271–272 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ewald, G.: Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics, vol. 168. Springer, New York (1996)

    Book  Google Scholar 

  13. Foschi, A.: Variétés magnifiques et polytopes moment, Ph.D. thesis, Université de Grenoble I (1998)

  14. Fulton, W.: Introduction to Toric Varieties, Annals of Mathematics Studies. Princeton University Press, Princeton (1993)

    Google Scholar 

  15. Gagliardi, G., Hofscheier, J.: Homogeneous spherical data of orbits in spherical embeddings. Transform. Groups. (2015). doi:10.1007/s00031-014-9297-2

  16. Grünbaum, B.: Graduate texts in mathematics. In: Kaibel, V., Klee, V., Ziegler, G.M. (eds.) Convex Polytopes, 2nd edn. Springer, New York (2003)

    Chapter  Google Scholar 

  17. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis, Grundlehren Text Editions. Springer, Berlin (2001)

    Book  Google Scholar 

  18. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics. Springer, New York (1978). Second printing, revised

    Google Scholar 

  19. Knop, F., Kraft, H., Luna, D., Vust, T.: Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie. DMV Sem. 13, 63–75 (1989)

    MathSciNet  Google Scholar 

  20. Knop, F., Kraft, H., Vust, T.: The Picard group of a \(G\)-variety, Algebraische Transformationsgruppen und Invariantentheorie. DMV Sem. 13, 77–87 (1989)

    MathSciNet  Google Scholar 

  21. Knop, F.: The Luna–Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (Madras), Manoj Prakashan, pp. 225–249 (1991)

  22. Knop, F.: On the set of orbits for a Borel subgroup. Comment. Math. Helv. 70(2), 285–309 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Knop, F.: Localization of spherical varieties. Algebra Number Theory 8(3), 703–728 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Luna, D.: Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups. Austral. Math. Soc. Lect. Ser. 9, 267–280 (1997)

    MathSciNet  Google Scholar 

  25. Luna, D.: Variétés sphériques de type \(A\). Publ. Math. Inst. Hautes Études Sci. 94, 161–226 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Luna, D., Vust, T.: Plongements d’espaces homogènes. Comment. Math. Helv. 58(2), 186–245 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mumford, D., Fogarty, J., Clare Kirwan, F.: Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994)

    Google Scholar 

  28. Pasquier, B.: Variétés horosphériques de Fano. Bull. Soc. Math. France 136(2), 195–225 (2008)

    MATH  MathSciNet  Google Scholar 

  29. Rosenlicht, M.: Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura Appl. (4) 61, 97–120 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  30. Springer, T.A.: Linear Algebraic Groups, Modern Birkhäuser Classics, 2nd edn. Birkhäuser Boston Inc., Boston (2009)

    Google Scholar 

  31. Timashev, D.A.: Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups 8. Springer, Heidelberg (2011)

    Google Scholar 

  32. Wasserman, B.: Wonderful varieties of rank two. Transform. Groups 1(4), 375–403 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank our teacher Victor Batyrev for encouragement and highly useful advice, as well as Jürgen Hausen for several useful discussions. We are also grateful to Dmitry Timashev for elaborating on Sect. 30.4 of his book. Finally, we thank the referee for several helpful remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Gagliardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagliardi, G., Hofscheier, J. Gorenstein spherical Fano varieties. Geom Dedicata 178, 111–133 (2015). https://doi.org/10.1007/s10711-015-0047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0047-y

Keywords

Mathematics Subject Classification

Navigation