Skip to main content
Log in

Limit points badly approximable by horoballs

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For a proper, geodesic, Gromov hyperbolic metric space X, a discrete subgroup of isometries Γ whose limit set is uniformly perfect, and a disjoint collection of horoballs {H j }, we show that the set of limit points badly approximable by {H j } is absolutely winning in the limit set Λ(Γ). As an application, we deduce that for a geometrically finite Kleinian group acting on \({\mathbb{H}^{n+1}}\), the limit points badly approximable by parabolics, denoted BA(Γ), is absolutely winning, generalizing previous results of Dani and McMullen. As a consequence of winning, we show that BA(Γ) has dimension equal to the critical exponent of the group. Since BA(Γ) can alternatively be described as the limit points representing bounded geodesics in the quotient \({\mathbb{H}^{n+1}/\Gamma}\), we recapture a result originally due to Bishop and Jones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apanasov B.N.: Cusp ends of hyperbolic manifolds. Ann Glob. Anal. Geom. 3, 1–11 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beresnevich, V., Dickinson, D., Velani, S.: Measure theoretic laws for lim sup sets. Mem. Amer. Math. Soc. 179(846) (2006)

  3. Bishop C.J., Jones P.W.: Hausdorff dimension and Kleinian groups. Acta. Math. 179, 1–39 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bowditch B.: Geometrical finiteness for hyperbolic groups. J. Funct. Anal. 113, 245–317 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bridson M., Haefliger A.: Metric Spaces of Non-Positive Curvtaure. Springer, Berlin (1999)

    Book  Google Scholar 

  6. Broderick R., Bugeaud Y., Fishman L., Kleinbock D., Weiss B.: Schmidt’s game, fractals, and numbers normal to no base. Math. Res. Lett. 17, 307–321 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Broderick R., Fishman L., Kleinbock D.: Schmidt’s game, fractals, and orbits of toral endomorphisms. Ergod. Theory Dyn. Syst. 31, 1095–1107 (2010)

    Article  MathSciNet  Google Scholar 

  8. Broderickm, R., Fishman, L., Kleinbock, D., Reich, A., Weiss, B.: The set of badly approximable vectors is strongly C 1 incompressible (preprint)

  9. Bugeaud Y.: Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  10. Chaika, J., Cheung, Y., Masur, H.: Winning games for bounded geodesics in Teichmueller discs (preprint)

  11. Dani S.G.: Bounded orbits of flows on homogeneous spaces comment. Math. Helv. 61, 636–660 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Einsiedler M., Tseng J.: Badly approximable systems of affine forms, fractals, and Schmidt games. J. Reine Agnew. Math. 660, 83–97 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Fishman L.: Schmidt’s game on fractals. Isr. J. Math. 171, 77–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fishman, L., Simmons, D., Urbanski, M.: Private communication

  15. Ghys, E., de la Harpe, P.: Sur les grupes hyperboliques d’apres Mikhael Gromov. Progr. Math. 83, Birkhauser Boston, Boston (1990)

  16. Greenberg L.: Finiteness Theorems for Fuchsian and Kleinian Groups Discrete Groups and Automorphic Functions, pp. 199–257. Academic Press Inc, London (1977)

    Google Scholar 

  17. Hersonsky S., Paulin F.: Diophantine approximation for negatively curved manifolds. Math. Z. 241, 181–226 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hill R., Velani S.: The Jarnik-Besicovitch theorem for geomterically finite Kleinian groups. Proc. Lond. Math. Soc. 77, 524–550 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jarnik V.: Diophantischen Approximationen und Hausdorffsches Mass. Mat. Sb. 36, 371–382 (1929)

    MATH  Google Scholar 

  20. Jarvi P., Vuorinen M.: Uniformly perfect sets and quasiregular mappings. J. Lond. Math. Soc. 54, 515–529 (1996)

    Article  MathSciNet  Google Scholar 

  21. Kapovich, M.: Kleinian groups in higher dimensions, geometry and dynamics of groups and spaces. Progr. Math. 265, 487–564. Birkhauser, Basel (2008)

    Google Scholar 

  22. Kleinbock, D., Weiss, B.: Modified Schmidt games and a conjecture of Margulis (preprint)

  23. Margulis, G.A.: Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory. In: Proceedings of the International Congress of Mathematicians (Kyoto, 1990). Math. Soc. Japan, Tokyo, pp. 193–215 (1991)

  24. McMullen C.: Winning sets, quasiconformal maps and diophantine approximation. Geom. Funct. Anal. 20, 726–740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nicholls, P.: The Ergodic Theory of Discrete Groups. London Math. Soc. Lecture Note Ser., Vol. 143. Cambridge University Press, Cambridge (1989)

  26. Patterson S.J.: Diophantine approximation in Fuchsian groups. Philos. Trans. R. Soc. Lond. Ser. A 282, 527–563 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schmidt W.: On badly approximable numbers and certain games. Trans. Am. Math. Soc. 123, 27–50 (1966)

    Article  Google Scholar 

  28. Stratmann B.: The Hausdorff dimension of bounded geodesics on geomterically finite manifolds. Ergod. Theory Dyn. Syst. 17, 227–246 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stratmann B., Urbanski M.: Diophantine extermality of the patterson measure. Math. Proc. Camb. Phil. Soc. 140, 297–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stratmann B., Velani S.: The patterson measure for geometrically finite groups with parabolic elements, new and old. Proc. Lond. Math. Soc. 71, 197–220 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin Mayeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayeda, D., Merrill, K. Limit points badly approximable by horoballs. Geom Dedicata 163, 127–140 (2013). https://doi.org/10.1007/s10711-012-9738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-012-9738-9

Keywords

Mathematics Subject Classification

Navigation