Skip to main content
Log in

The index array approach and the dual tiled similarity algorithm for UAS hyper-spatial image processing

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Unmanned aerial systems (UAS) have been used as a robust tool for agricultural and environmental applications in recent years. Remote sensing systems based on UAS typically acquire massive hyper-spatial images in its short turnaround. This paper takes advantage of graphics processing unit (GPU) massive parallel computation in order to process the huge data timely and efficiently. More specifically, this paper presents an index array approach for lens distortion correction and geo-referencing. They are the two essential components in UAS hyper-spatial image processing. The index array approach is also capable of parallelizing image file I/O and the orthoimage generation. In addition, this paper presents the dual tiled similarity algorithm for the image co-registration. The index array approach and the dual tiled similarity algorithm were evaluated using two UAS remote sensing datasets of South Padre island shorelines. The results show that this index array approach was able to speed up at least 10 times the lens distortion correction and the geo-referencing relative to the central processing unit (CPU) computation. This dual tiled algorithm could provide 12 times speedup compared with the CPU similarity computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. FAA, Unmanned Aircraft Systems (UAS) - Regulations & Policies, 2011, http://www.faa.gov/about/initiatives/uas/reg/

  2. Christophe E, Michel J, Inglada J (2011) Remote sensing processing: from multicore to GPU. IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):643–652

    Article  Google Scholar 

  3. Lee CA, Gasster SD, Plaza A, Chang C, Huang B (2011) Recent developments in high performance computing for remote sensing: a review. IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):508–527

    Article  Google Scholar 

  4. Setoain J, Prieto M, Tenllado C, Plaza A, Tirado F (2007) Parallel morphological endmember extraction using commodity graphics hardware. IEEE Geosci Remote Sens Lett 4(3):441–445

    Article  Google Scholar 

  5. Yang H, Du Q, Chen G (2011) Unsupervised hyperspectral band selection using graphics processing units. IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):660–668

    Article  Google Scholar 

  6. Luo Y, Guo K, Zhao S, Tao Z, Wang M (2012) Feature extraction of hyperspectral remote sensing in parallel computing research based on GPU. In Proceedings of the 4th GEOBIA, pp. 381–384, May, Rio de Janeiro, Brazil

  7. Trigueros-Espinosa B, Velez-Reyes M, Santiago NG, Rosario-Torres S (2012) Evaluation of the graphics processing unit architecture for the implementation of target detection algorithms for hyperspectral imagery. Journal of Applied Remote Sensing, Vol.6, No.1, 061506 (Jun 21). doi: 10.1117/1.JRS.6.061506

  8. Gonzalez C, Sanchez S, Paz A, Resano J, Mozos D, Plaza A (2013) Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing. Integr VLSI J 46:89–103

    Article  Google Scholar 

  9. Qu H, Zhang J, Lin Z, Chen H (2013) Parallel Acceleration of SAM Algorithm and Performance Analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1172–1178

    Article  Google Scholar 

  10. Molero JM, Garzon EM, Garcia I, Quintana-Orti ES, Plaza A (2014) Efficient implementation of hyperspectral anomaly detection techniques on GPUs and multicore processors. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2256–2266

    Article  Google Scholar 

  11. Nascimento JMP, Bioucas-Dias JM, Alves JMR, Silva V, Plaza A (2014) Parallel hyperspectral unmixing on GPUs. IEEE Geosci Remote Sens Lett 11(3):666–670

    Article  Google Scholar 

  12. Wu X, Huang B, Plaza A, Li Y, Wu C (2014) Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs. IEEE Geosci Remote Sens Lett 11(5):955–959

    Article  Google Scholar 

  13. Dai C, Yang J (2011) Research on orthorectification of remote sensing images using GPU-CPU cooperative processing. In Proceedings of IGARSS 2011. July, Vancouver, Canada

  14. Reguera-Salgado J, Calvino-Cancela M, Martin-Herrero J (2012) GPU geocorrection for airborne pushbroom imagers. IEEE Trans Geosci Remote Sens 50(11):4409–4419

    Article  Google Scholar 

  15. Lemoine G, Giovalli M (2013) Geo-correction of high-resolution imagery using fast template matching on a GPU in emergency mapping contexts. Remote Sens 5:4488–4502. doi:10.3390/rs5094488

    Article  Google Scholar 

  16. Zhang W, Li Y, Li D, Teng C, Liu J (2014) Distortion correction algorithm for UAV remote sensing image based on CUDA. 35th International Symposium on Remote Sensing of Environment (ISRSE35), IOP Conference Series: Earth and Environmental Science, vol.17

  17. Fang L, Wang M, Li D, Pan J (2014) CPU/GPU near real-time preprocessing for ZY-3 satellite images: relative radiometric correction, MTF compensation, and geocorrection. ISPRS J Photogramm Remote Sens 87:229–240

    Article  Google Scholar 

  18. Lei Z, Wang M, Li D, Lei TL (2014) Stream model-based orthorectification in a GPU cluster environment. IEEE Geosci Remote Sens Lett 11(12):2115–2119

    Article  Google Scholar 

  19. Su X, Wu J, Huang B, Wu Z (2013) GPU-accelerated computation for electromagnetic scattering of a double-layer vegetation model. IEEE J Sel Top Appl Earth Obs Remote Sens 6(4):1799–1806

    Article  Google Scholar 

  20. Coleman DM, Feldman DR (2013) Porting existing radiation code for GPU acceleration. IEEE J Sel Top Appl Earth Obs Remote Sens 6(6):2486–2491

    Article  Google Scholar 

  21. Fulkerson B, Soatto S (2012) Really quick shift: Image segmentation on a GPU. Trends and Topics in Computer Vision. Springer, Berlin, pp 350–358

    Google Scholar 

  22. Happ PN, Feitosa RQ, Bentes C, Farias R (2013) A region-growing segmentation algorithm for GPUs. IEEE Geosci Remote Sens Lett 10(6):1612–1616

    Article  Google Scholar 

  23. Bernabe S, Plaza A, Marpu PR, Benediktsson JA (2012) A new parallel tool for classification of remotely sensed imagery. Comput Geosci 46:208–218

    Article  Google Scholar 

  24. Wolf P, DeWitt B (2000) Elements of photogrammetry with applications in GIS (3rd Edition). McGraw-Hill, New York

    Google Scholar 

  25. (2013) Intergraph, ERDAS Field Guide

  26. Lillesand T, Kiefer RW, Chipman J (2007) Remote sensing and image interpretation (6th Edition). Wiley, New York

    Google Scholar 

  27. Maune DF (2007) Digital elevation model technologies and applications: the DEM users manual. The American Society for Photogrammetry and Remote Sensing

  28. Shan J, Toth CK (2008) Topographic laser ranging and scanning: principles and processing. CRC

  29. Turner D, Lucieer A, Malenovsky Z, King DH, Robinson SA (2014) Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over antarctic moss beds. Remote Sens 6(5):4003–4024. doi:10.3390/rs6054003

    Article  Google Scholar 

  30. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  31. (2014) Kolor Autopano, Version 1.4.0. Autopano website http://www.autopano.net

  32. Laliberte AS, Herrick JE, Rango A, Winters C (2010) Acquisition, orthorectification, and object-based classification of Unmanned Aerial Vehicle (UAV) imagery for rangeland monitoring. Photogramm Eng Remote Sens 76(6):661–672

    Article  Google Scholar 

  33. Du Q, Raksuntorn N, Orduyilmaz A, Bruce LM (2008) Automatic registration and mosaicking for airborne multispectral image sequences. Photogramm Eng Remote Sens 74(2):169–181

    Article  Google Scholar 

  34. Mitchell HB (2010) Image fusion theories, Techniques and applications. Springer, New York

    Google Scholar 

  35. Morton RA, Peterson RL, South Texas Coastal Classification Maps - Mansfield Channel to the Rio Grande, USGS Open File Report 2006–1133. http://pubs.usgs.gov/of/2006/1133/mapintro.html Accessed 21 Oct 2015

  36. Kirk DB, Hwu WW (2010) Programming massively parallel processors, a hands-on approach. Elsevier, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported partly by the NSF grant MRI: Acquisition of a High Performance Computing Cluster to Support Multidisciplinary Big Data Analysis and Modeling (#1429518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Huang, Y., Gibeaut, J. et al. The index array approach and the dual tiled similarity algorithm for UAS hyper-spatial image processing. Geoinformatica 20, 859–878 (2016). https://doi.org/10.1007/s10707-016-0253-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-016-0253-2

Keywords

Navigation