Skip to main content

Advertisement

Log in

Contribution of N2O and NH3 to total greenhouse gas emission from fertilization: results from a sandy soil fertilized with nitrate and biogas digestate with and without nitrification inhibitor

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Fertilization with biogas residues from the digestion of energy crops is of growing importance. Digestate from silage maize (Zea mays L.) is a new fertilizer with a high potential for ammonia (NH3) and nitrous oxide (N2O) emission. The aim of this study was to determine the effect of different maize fertilization systems [180 kg N ha−1 in form of calcium nitrate (MIN), biogas digestate from maize (DIG) and biogas digestate from maize mixed with the nitrification inhibitor Piadin (DIG + NI)] on the emission of NH3 and N2O from a sandy soil and to assess the total greenhouse gas emission of these fertilization systems. The study is based on a randomized field plot experiment in central Germany and an experimental period of a full year. Annual N2O-N emission was generally low [0.21 (MIN) to 0.37 (DIG) kg N ha−1] without differences between treatments. The application of Piadin reduced N2O emissions by 37 and 62 % during the weeks following digestate application but the annual N2O emission was not affected by the fertilization treatment. NH3 emission was only significant for treatments fertilized with digestate. It was not affected by Piadin and accounted for 27 % (+NI) and 29 % of the applied ammonium. Total greenhouse gas emission was dominated by NH3 losses (reducing the fertilizer value and inducing indirect N2O emissions) for the treatments fertilized with maize digestate. The most important greenhouse gas emission source of the MIN treatment were emissions from fertilizer production. Our results show the high potential of digestate from maize as a new source of NH3 emission. Mitigation measures are essential to save the value of this new fertilizer type and to reduce atmospheric and environmental pollution by direct emission of NH3 and indirect emission of greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama H, Yan X, Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob Change Biol 16(6):1837–1846. doi:10.1111/j.1365-2486.2009.02031.x

    Article  Google Scholar 

  • Amon B, Kryvoruchko V, Amon T, Zechmeister-Boltenstern S (2006) Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric Ecosyst Environ 112(2–3):153–162. doi:10.1016/j.agee.2005.08.030

    Article  CAS  Google Scholar 

  • Bernal MP, Kirchmann H (1992) Carbon and nitrogen mineralization and ammonia volatilization from fresh, aerobically and anaerobically treated pig manure during incubation with soil. Biol Fertil Soils 13(3):135–141

    CAS  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16 (4) doi:10.1029/2001gb001811

  • Brentrup F, Pallière C (2008) GHG emissions and energy efficiency in European nitrogen fertiliser production and use. In: IFS proceedings. International Fertilizer Society, vol 639

  • Chantigny MH, Angers DA, Rochette P, Belanger G, Masse D, Cote D (2007) Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. J Environ Qual 36(6):1864–1872. doi:10.2134/jeq2007.0083

    Article  CAS  PubMed  Google Scholar 

  • Comfort SD, Kelling KA, Keeney DR, Converse JC (1990) Nitrous-oxide production from injected liquid dairy manure. Soil Sci Soc Am J 54(2):421–427

    Article  Google Scholar 

  • Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases; Methane, nitrogen oxides, and halomethanes. Am. Soc. Microbiol, Washington, pp 219–235

    Google Scholar 

  • de Boer HC (2008) Co-digestion of animal slurry can increase short-term nitrogen recovery by crops. J Environ Qual 37(5):1968–1973. doi:10.2134/jeq2007.0594

    Article  PubMed  Google Scholar 

  • Dendooven L, Splatt P, Anderson JM (1996) Denitrification in permanent pasture soil as affected by different forms of C substrate. Soil Biol Biochem 28(2):141–149. doi:10.1016/0038-0717(95)00137-9

    Article  CAS  Google Scholar 

  • Dobbie KE, Smith KA (2003) Impact of different forms of N fertilizer on N2O emissions from intensive grassland. Nutr Cycl Agroecosyst 67(1):37–46. doi:10.1023/a:1025119512447

    Article  CAS  Google Scholar 

  • Dörsch P, Palojarvi A, Mommertz S (2004) Overwinter greenhouse gas fluxes in two contrasting agricultural habitats. Nutr Cycl Agroecosyst 70(2):117–133. doi:10.1023/b:fres.0000048473.11362.63

    Article  Google Scholar 

  • Ferm M, Kasimir-Klemedtsson A, Weslien P, Klemedtsson L (1999) Emission of NH3 and N2O after spreading of pig slurry by broadcasting or band spreading. Soil Use Manag 15(1):27–33

    Article  Google Scholar 

  • Flessa H, Beese F (1995) Effects of sugar-beet residues on soil redox potential and nitrous-oxide emission. Soil Sci Soc Am J 59(4):1044–1051

    Article  CAS  Google Scholar 

  • Flessa H, Dorsch P, Beese F (1995) Seasonal-variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. J Geophys Res Atmos 100(D11):23115–23124. doi:10.1029/95jd02270

    Article  CAS  Google Scholar 

  • Flessa H, Ruser R, Schilling R, Loftfield N, Munch JC, Kaiser EA, Beese F (2002) N2O and CH4 fluxes in potato fields: automated measurement, management effects and temporal variation. Geoderma 105(3–4):307–325. doi:10.1016/s0016-7061(01)00110-0

    Article  CAS  Google Scholar 

  • Folorunso OA, Rolston DE (1984) Spatial variability of field-measured denitrification gas fluxes. Soil Sci Soc Am J 48(6):1214–1219

    Article  CAS  Google Scholar 

  • Gericke D, Pacholski A, Kage H (2011) Measurement of ammonia emissions in multi-plot field experiments. Biosyst Eng 108(2):164–173. doi:10.1016/j.biosystemseng.2010.11.009

    Article  Google Scholar 

  • Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168(4):439–446. doi:10.1002/jpln.200520510

    CAS  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

  • Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous-oxide fluxes. Soil Sci Soc Am J 45(2):311–316

    Article  CAS  Google Scholar 

  • IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Institute for Global Environmental Studies (IGES), Japan

  • Jaeger N, Duffner A, Ludwig B, Flessa H (2013) Effect of fertilization history on short-term emission of CO2 and N2O after the application of different N fertilizers—a laboratory study. Arch Agron Soil Sci 59(2):161–171. doi:10.1080/03650340.2011.621420

    Article  CAS  Google Scholar 

  • Jungkunst HF, Freibauer A, Neufeldt H, Bareth G (2006) Nitrous oxide emissions from agricultural land use in Germany - a synthesis of available annual field data. J Plant Nutr Soil Sci 169(3):341–351. doi:10.1002/jpln.200521954

    CAS  Google Scholar 

  • Kim D-G, Saggar S, Roudier P (2012) The effect of nitrification inhibitors on soil ammonia emissions in nitrogen managed soils: a meta-analysis. Nutr Cycl Agroecosyst 93(1):51–64. doi:10.1007/s10705-012-9498-9

    Article  CAS  Google Scholar 

  • Loftfield N, Flessa H, Augustin J, Beese F (1997) Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide. J Environ Qual 26(2):560–564

    Article  CAS  Google Scholar 

  • McTaggart IP, Clayton H, Parker J, Swan L, Smith KA (1997) Nitrous oxide emissions from grassland and spring barley, following N fertiliser application with and without nitrification inhibitors. Biol Fertil Soils 25(3):261–268. doi:10.1007/s003740050312

    Article  CAS  Google Scholar 

  • Meijide A, Diez JA, Sanchez-Martin L, Lopez-Fernandez S, Vallejo A (2007) Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agric Ecosyst Environ 121(4):383–394. doi:10.1016/j.agee.2006.11.020

    Article  Google Scholar 

  • Merino P, Menendez S, Pinto M, Gonzalez-Murua C, Estavillo JM (2005) 3,4-dimethylpyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manag 21(1):53–57. doi:10.1079/sum2005292

    Article  Google Scholar 

  • Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12(3):242–257. doi:10.1002/elsc.201100085

    Article  Google Scholar 

  • Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30(1):1–16. doi:10.1016/j.eja.2008.06.003

    Article  Google Scholar 

  • Nyord T, Hansen MN, Birkmose TS (2012) Ammonia volatilisation and crop yield following land application of solid-liquid separated, anaerobically digested, and soil injected animal slurry to winter wheat. Agric Ecosyst Environ 160:75–81. doi:10.1016/j.agee.2012.01.002

    Article  Google Scholar 

  • Oquist MG, Nilsson M, Sorensson F, Kasimir-Klemedtsson A, Persson T, Weslien P, Klemedtsson L (2004) Nitrous oxide production in a forest soil at low temperatures - processes and environmental controls. FEMS Microbiol Ecol 49(3):371–378. doi:10.1016/j.femsec.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  • Pacholski A, Cai GX, Nieder R, Richter J, Fan XH, Zhu ZL, Roelcke M (2006) Calibration of a simple method for determining ammonia volatilization in the field - comparative measurements in Henan Province, China. Nutr Cycl Agroecosystems 74(3):259–273. doi:10.1007/s10705-006-9003-4

    Article  CAS  Google Scholar 

  • Parkin TB, Hatfield JL (2010) Influence of nitrapyrin on N2O losses from soil receiving fall-applied anhydrous ammonia. Agric Ecosyst Environ 136(1–2):81–86. doi:10.1016/j.agee.2009.11.014

    Article  CAS  Google Scholar 

  • Petersen SO (1992) Nitrification and denitrification after direct injection of liquid cattle manure. Acta Agric Scand Sect B Soil Plant Sci 42(2):94–99

    CAS  Google Scholar 

  • Pfab H, Palmer I, Buegger F, Fiedler S, Mueller T, Ruser R (2012) Influence of a nitrification inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil. Agric Ecosyst Environ 150:91–101. doi:10.1016/j.agee.2012.01.001

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team TRDC (2012) nlme: linear and nonlinear mixed effects models. R package version 3.1-104

  • Prasad R, Power JF (1995) Nitrification inhibitors for agriculture, health, and the environment. Adv Agron 54(54):233–281. doi:10.1016/s0065-2113(08)60901-3

    Article  CAS  Google Scholar 

  • Quakernack R, Pacholski A, Techow A, Herrmann A, Taube F, Kage H (2012) Ammonia volatilization and yield response of energy crops after fertilization with biogas residues in a coastal marsh of Northern Germany. Agric Ecosyst Environ 160:66–74. doi:10.1016/j.agee.2011.05.030

    Article  CAS  Google Scholar 

  • Roelcke M, Li SX, Tian XH, Gao YJ, Richter J (2002) In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils. Nutr Cycl Agroecosyst 62(1):73–88

    Article  CAS  Google Scholar 

  • Rubaek GH, Henriksen K, Petersen J, Rasmussen B, Sommer SG (1996) Effects of application technique and anaerobic digestion on gaseous nitrogen loss from animal slurry applied to ryegrass (Lolium perenne). J Agric Sci 126:481–492

    Article  Google Scholar 

  • Ruser R, Flessa H, Schilling R, Steindl H, Beese F (1998) Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci Soc Am J 62(6):1587–1595

    Article  CAS  Google Scholar 

  • Ruser R, Flessa H, Schilling R, Beese F, Munch JC (2001) Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutr Cycl Agroecosyst 59(2):177–191. doi:10.1023/a:1017512205888

    Article  Google Scholar 

  • Saenger A, Geisseler D, Ludwig B (2011) Effects of moisture and temperature on greenhouse gas emissions and C and N leaching losses in soil treated with biogas slurry. Biol Fertil Soils 47(3):249–259. doi:10.1007/s00374-010-0528-y

    Article  CAS  Google Scholar 

  • Scheftelowitz M (2013) Stromerzeugung aus Biomasse. 03MAP250, Zwischenbericht. DBFZ Deutsches Biomasseforschungszentrum, Leipzig, Germany

  • Sommer SG, Jensen LS, Clausen SB, Sogaard HT (2006) Ammonia volatilization from surface-applied livestock slurry as affected by slurry composition and slurry infiltration depth. J Agric Sci 144:229–235. doi:10.1017/s0021859606006022

    Article  CAS  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit Rev Plant Sci 25(4):303–335. doi:10.1080/07352680600794232

    Article  CAS  Google Scholar 

  • Thomsen IK, Pedersen AR, Nyord T, Petersen SO (2010) Effects of slurry pre-treatment and application technique on short-term N2O emissions as determined by a new non-linear approach. Agric Ecosyst Environ 136(3–4):227–235. doi:10.1016/j.agee.2009.12.001

    Article  CAS  Google Scholar 

  • VanderZaag AC, Jayasundara S, Wagner-Riddle C (2011) Strategies to mitigate nitrous oxide emissions from land applied manure. Anim Feed Sci Technol 166–67:464–479. doi:10.1016/j.anifeedsci.2011.04.034

    Article  Google Scholar 

  • Vandre R, Kaupenjohann M (1998) In situ measurement of ammonia emissions from organic fertilizers in plot experiments. Soil Sci Soc Am J 62(2):467–473

    Article  CAS  Google Scholar 

  • Velthof GL, Kuikman PJ, Oenema O (2003) Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol Fertil Soils 37(4):221–230. doi:10.1007/s00374-003-0589-2

    CAS  Google Scholar 

  • Webb J, Pain B, Bittman S, Morgan J (2010) The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response-A review. Agric Ecosyst Environ 137(1–2):39–46. doi:10.1016/j.agee.2010.01.001

    Article  Google Scholar 

  • Weier KL, Doran JW, Power JF, Walters DT (1993) Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil-water, available carbon, and nitrate. Soil Sci Soc Am J 57(1):66–72

    Article  CAS  Google Scholar 

  • Wulf S, Maeting M, Clemens J (2002a) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: i. Ammonia volatilization. J Environ Qual 31(6):1789–1794

    Article  CAS  PubMed  Google Scholar 

  • Wulf S, Maeting M, Clemens J (2002b) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions. J Environ Qual 31(6):1795–1801

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed Effect Models and Extensions in Ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This project was supported by the Deutsche Forschungsgemeinschaft (DFG Research Training Group 1397 “Regulation of soil organic matter and nutrient turnover in organic agriculture”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Wolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, U., Fuß, R., Höppner, F. et al. Contribution of N2O and NH3 to total greenhouse gas emission from fertilization: results from a sandy soil fertilized with nitrate and biogas digestate with and without nitrification inhibitor. Nutr Cycl Agroecosyst 100, 121–134 (2014). https://doi.org/10.1007/s10705-014-9631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-014-9631-z

Keywords

Navigation