Skip to main content
Log in

Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The stress-based failure criterion is implemented into the non-ordinary state-based peridynamic model. The non-ordinary state-based peridynamic model is developed to simulate the initiation, propagation and coalescence process of cracks subjected to quasi-static and dynamic loads. Three-point-bending tests with a notch offset from the center of the beam are numerically conducted under quasi-static loads. The mode I fracture toughness of Kimachi sandstone has also been evaluated using the non-ordinary state-based peridynamic model by semi-circular bend. Moreover, the proposed method is applied to investigate the effects of arrays of cracks on propagation and coalescence process of multiple cracks subjected to dynamic loads. The numerical results are in good agreement with the previous experimental and numerical results. It is concluded that the non-ordinary state-based peridynamic model is able to analyze fracture problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater-T ASME 106:326–330

    Article  Google Scholar 

  • Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerking method (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  Google Scholar 

  • Belytschko T, Krongauz Y, Organ D et al (1996) Meshless method: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  Google Scholar 

  • Bobaru F, Silling SA (2004) Peridynamic 3D problems of nanofiber networks and carbon nanotube-reinforced composites. In: Materials and design: proceedings of numiform. American Institute of Physics, pp 1565–1570

  • Bobaru F, Yang M, Alves LF et al (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77:852–877

    Article  Google Scholar 

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  Google Scholar 

  • Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  Google Scholar 

  • Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014) Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250

    Article  Google Scholar 

  • Cheng H, Zhou XP (2014) A multi-dimensional space method for dynamic cracks problems using implicit time scheme in the framework of the extended finite element method. Int J Damage Mech 24:859–890

    Article  Google Scholar 

  • Chong KP, Kuruppu MD, Kuszmaul JS (1987) Fracture toughness determination of layered materials. Eng Fract Mech 28:43–54

    Article  Google Scholar 

  • Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54:1811–1842

    Article  Google Scholar 

  • Duflot M (2006) A meshless method with enriched weight functions for three-dimensional crack propagation. Int J Numer Methods Eng 65:1970–2006

    Article  Google Scholar 

  • Duflot M, Nguyen-Dang H (2004) A meshless with enriched weight functions for fatigue crack growth. Int J Numer Methods Eng 59:1945–2001

    Article  Google Scholar 

  • Flanagan DP, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Methods Eng 17:679–706

    Article  Google Scholar 

  • Fleming M, Chu YA, Moran B et al (1997) Enriched element-free Galerkin methods for crack tip field. Int J Numer Methods Eng 40:1483–1504

    Article  Google Scholar 

  • Funatsu T, Shimizu N, Kuruppu M, Matsui K (2015) Evaluation of mode I fracture toughness assisted by the numerical determination of K-resistance. Rock Mech Rock Eng 48:143–157

    Article  Google Scholar 

  • Gerstle W, Sau N, Aguilera E (2007) Micropolar peridynamic constitutive model for concrete. In: Proceedings of the 19th international conference on structural mechanics in reactor technology (SMiRT19), Toronto

  • Gerstle W, Sau N, Silling SA (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237:1250–1258

    Article  Google Scholar 

  • Gerstle W, Sau N, Sakhavand N (2009) On peridynamic computational simulation of concrete structures, vol 265. ACI Special Publication, New Orleans

    Google Scholar 

  • Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162:229–244

    Article  Google Scholar 

  • Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78:1156–1168

    Article  Google Scholar 

  • Himanshu P, Akhilendra S, Indra VS (2013) A simple and efficient XFEM approach for 3-D cracks simulations. Int J Fract 181:189–208

    Article  Google Scholar 

  • Huang D, Lu GD, Qiao PZ (2015a) An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int J Mech Sci 94–95:111–122

  • Huang D, Lu GD, Wang CW, Qiao PZ (2015b) An extended peridynamic approach for deformation and fracture analysis. Eng Fract Mech 141:196–211

  • Izumi S, Katake S (1993) Molecular dynamics study of solid deformation. Trans JSME A 59:263–267

    Article  Google Scholar 

  • Jabakhanji R, Mohtar RH (2015) A peridynamic model of flow in porous media. Adv Water Resour 78:22–35

    Article  Google Scholar 

  • Jenq YS, Shah SP (1988) Mixed-mode fracture of concrete. Int J Fract 38:123–142

    Google Scholar 

  • Kilic B, Madenci E (2009a) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156:165–177

    Article  Google Scholar 

  • Kilic B, Madenci E (2009b) Structural stability and failure analysis using peridynamic theory. Int J Non-Linear Mech 44:845–854

    Article  Google Scholar 

  • Lee HW, Jeon SW (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999

    Article  Google Scholar 

  • Lehoucq RB, Silling SA (2007) Statistical coarse-graining of atomistics into peridynamics. In: Sandia National Laboratory Report, SAND2007-6410

  • Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56:1566–1577

    Article  Google Scholar 

  • Liang ZZ, Xing H, Wang SY, Williams DJ, Tang CA (2012) A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech 45:19–33

    Article  Google Scholar 

  • Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109:67–75

    Article  Google Scholar 

  • Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 1–mode I. Int J Rock Mech Min Sci Geomech Abstr 31:185–197

    Article  Google Scholar 

  • Liu WK, Jun S, Zhang YF (1995) Meshfree and particle methods and their applications. Int J Numer Methods Fluids 20:1655–1679

    Article  Google Scholar 

  • Li HL, Wong LNY (2012) Influence of flaw inclination angle and loading condition on crack initiation and propagation. Int J Solids Struct 49(18):2482–2499

    Article  Google Scholar 

  • Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 1977(28):1013–1024

    Article  Google Scholar 

  • Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43:1169–1178

    Article  Google Scholar 

  • Mitchell JA (2011) A nonlocal, ordinary, state-based plasticity model for peridynamics. In: Sandia National Laboratory Report, SAND2011-3

  • Moes N, Dolbow J, Belyschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  Google Scholar 

  • Moes N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model. Int J Numer Methods Eng 53:2549–2568

    Article  Google Scholar 

  • O’Grady J, Foster J (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51:3177–3183

    Article  Google Scholar 

  • Oterkus E, Madenci E, Weckner O (2012) Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Compos Struct 94:839–850

    Article  Google Scholar 

  • Oterkus S, Madenci E, Agwai A (2014) Peridynamic thermal diffusion. J Comput Phys 265:71–96

    Article  Google Scholar 

  • Paluszny A, Matthai SK (2009) Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media. Int J Solids Struct 46(18–19):3383–3397

    Article  Google Scholar 

  • Pandolfi A, Ortiz M (2012) An eigenerosion approach to brittle fracture. Int J Numer Methods Eng 92:694–714

    Article  Google Scholar 

  • Pearce CJ, Thavalingam A, Liao Z, Bicanic N (2000) Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture. Eng Fract Mech 65:283–298

    Article  Google Scholar 

  • Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech-ASCE 113:1512–1533

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Rannou J, Limodin N, Réthoré J (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199:1307–1325

    Article  Google Scholar 

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  Google Scholar 

  • Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  • Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184

    Article  Google Scholar 

  • Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  • Sun S, Sundararaghavan V (2014) A peridynamic implementation of crystal plasticity. Int J Solids Struct 51:3350–3360

  • Tupek MR, Rimoli JJ, Radovitzky R (2013) An approach for incorporating classical continuum damage models in state-based peridynamics. Comput Methods Appl Mech Eng 263:20–26

    Article  Google Scholar 

  • Wang EZ, Shrive NG (1993) On the Griffith criteria for brittle fracture in compression. Eng Fract Mech 46:15–26

    Article  Google Scholar 

  • Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5):1186–1195

    Article  Google Scholar 

  • Wildman RA, Gazonas GA (2014) A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 190:39–52

    Article  Google Scholar 

  • Wolff C, Richart N, Molinari JF (2015) A non-local continuum damage approach to model dynamic crack branching. Int J Numer Methods Eng 101:933–949

    Article  Google Scholar 

  • Wu ZJ, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39:38–53

    Article  Google Scholar 

  • Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 2007(44):871–889

    Article  Google Scholar 

  • Zhang HH, Li LX, An XM, Ma GW (2010) Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Eng Anal Bound Elem 34:41–50

    Article  Google Scholar 

  • Zhang XP, Wong LNY (2012) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45:711–737

    Google Scholar 

  • Zhou XP, Bi J, Qian QH (2014) Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws. Rock Mech Rock Eng 48:1097–1114

    Article  Google Scholar 

  • Zhou XP, Qian QH, Yang HQ (2008) Bifurcation condition of crack pattern in the periodic rectangular array. Theor Appl Fract Mech 49:206–212

    Article  Google Scholar 

  • Zhou XP, Xie WT, Qian QH (2010) Bifurcation of collinear crack system under dynamic compression. Theor Appl Fract Mech 54:166–171

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (No. 51325903), Project 973 of China (Grant No. 2014CB046903) and Natural Science Foundation Project of CQ CSTC (Nos. cstc2013kjrc-ljrccj0001; cstc2015jcyjys30001; cstc2015jcyjys30006; cstc2016jcyjys0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, Y. & Xu, X. Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics. Int J Fract 201, 213–234 (2016). https://doi.org/10.1007/s10704-016-0126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0126-6

Keywords

Navigation