Skip to main content
Log in

Action Quantization, Energy Quantization, and Time Parametrization

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The additional information within a Hamilton–Jacobi representation of quantum mechanics is extra, in general, to the Schrödinger representation. This additional information specifies the microstate of \(\psi \) that is incorporated into the quantum reduced action, W. Non-physical solutions of the quantum stationary Hamilton–Jacobi equation for energies that are not Hamiltonian eigenvalues are examined to establish Lipschitz continuity of the quantum reduced action and conjugate momentum. Milne quantization renders the eigenvalue J. Eigenvalues J and E mutually imply each other. Jacobi’s theorem generates a microstate-dependent time parametrization \(t-\tau =\partial _E W\) even where energy, E, and action variable, J, are quantized eigenvalues. Substantiating examples are examined in a Hamilton–Jacobi representation including the linear harmonic oscillator numerically and the square well in closed form. Two byproducts are developed. First, the monotonic behavior of W is shown to ease numerical and analytic computations. Second, a Hamilton–Jacobi representation, quantum trajectories, is shown to develop the standard energy quantization formulas of wave mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Floyd, E.R.: Born–Sommerfeld quantization with the effective action variable. Phys. Rev. D 25, 1547 (1982)

    Article  ADS  Google Scholar 

  2. Floyd, E.R.: Physics Auxiliary Publication Service to Ref. 1, PAPS PRVDA 25-1547-20; order free pdf copy from http://www.aip.org/pubservs/epaps.html citing PAPS Number and journal reference (Reference 1 above)

  3. Floyd, E.R.: Modified potential and Bohm’s quantum potential. Phys. Rev. D 26, 1339 (1982)

    Article  ADS  Google Scholar 

  4. Floyd, E.R.: Arbitrary initial conditions for hidden variables. Phys. Rev. D 29, 1842 (1984)

    Article  ADS  Google Scholar 

  5. Floyd, E.R.: Closed form solutions for the modified potential. Phys. Rev. D 34, 3246 (1986)

    Article  ADS  Google Scholar 

  6. Floyd, E. R.: Where and why the generalized Hamilton-Jacobi representation describes microstates of the Schödinger wave function. Found. Phys. Lett. 9, 489 (1996). arXiv:quant-ph/9708070

  7. Carroll, R.: Some remarks on time, uncertainty, and spin. J. Can. Phys. 77, 319 (1999). arXiv:quant-ph/9903081

  8. Floyd, E.R.: Reflection time and the Goos-Hänchen effect for reflections from a semi-infinite rectangular barrier. Found. Phys. Lett. 13, 235 (2000). arXiv:quant-ph/9708070

  9. Faraggi, A.E., Matone, M.: The equivalence postulate of quantum mechanics. Int. J. Mod. Phys. A 15, 1869 (2000). arXiv:hep-th/9809127

  10. Floyd, E.R.: Classical limit of the trajectory representation of quantum mechanics, loss of information and residual indeterminacy. Int. J. Mod. Phys. A 15. 1363 (2000). arXiv:quant-ph/9907092

  11. Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, New York (2005)

    MATH  Google Scholar 

  12. Milne, W. E,: The numerical determination of characteristic numbers. Phys. Rev. 35, 863 (1930). (Cambridge, New York, 2007) pp 959–64

  13. Faraggi, A.E., Matone, M.: Quantum mechanics from an equivalence principle. Phys. Lett. B 450, 34 (1999). arXiv:hep-th/9705108

  14. Faraggi, A. E., Matone, M.: Energy quantisation and time parameterisation. Eur. Phys. J. C 74, 2694 (2014). arXiv:1211.0798v2

  15. Faraggi, A.E.: The quantum closet. In: Dobrev, V. (ed.) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, Vol. 111, pp 541–549. Springer, Berlin (2014). arXiv:1305.0044

  16. Faraggi, A.E., Matone, M.: The Möbius symmetry of quantum mechanics. arXiv:1502.04456

  17. Faraggi, A.E., Matone, M.: Hamilton-Jacobi meet Möbius. arXiv:1503.01286

  18. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Bull. Univ. Princet. 13, 49–52 (1902)

    Google Scholar 

  19. Isaacson, E. Keller, H.B.: Analysis of Numerical Methods, pp 1, 22, 23, 27, 139, 444. Wiley, New York (1966)

  20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  21. Tipler, P., Llewellyn, R.: Modern Physics, 5th edn. W. H. Freeman and Co., New York (2008)

    Google Scholar 

  22. Hille, E.: Ordinary Differential Equations in the Complex Plain, pp. 374–401. Dover, Mineola (1976)

    Google Scholar 

  23. Forsyth, A.R.: A Treatise on Differential Equations, 6th ed, pp. 104–105, 320–322. Macmillan, London (1929)

  24. Hecht, C.E., Mayer, J.E.: Extension of the WKB equation. Phys. Rev. 106, 1156–1160 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Floyd, E.R.: The philosophy of the trajectory representation of quantum mechanics. In: Amoroso, R. L., Hunter, G., Kafatos, M., Vigier, J.-P. (eds.) Gravitation and Cosmology: From the Hubble Radius to the Planck Scale; Proceedings of a Symposium in Honour of the 80th Birthday of Jean-Pierre Vigier, pp 401-408. Kluwer Academic, Dordrecht (2002), extended version promulgated as arXiv:quant-ph/00009070

  26. Souradeep, T., Pogsyan, D., Bond, J.R.: Probing cosmic topology using CMB anistropy. In: Vân, J.T.T., Graud-Héraud, Y., Bouchet, F., Damour, T., Mellier, Y. (eds.) Fundamental Parameters in Cosmology, pp. 131–133. Editions Frontières, Paris (1998)

    Google Scholar 

  27. Bender, C.M., Orszan, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1978)

    Google Scholar 

  28. Dwight, H.W.: Table of Integrals and Other Mathematical Data, 4th ed. Macmillan, New York (1961) 401.2

  29. Eisberg, R.M.: Fundamentals of Modern Physics, pp. 239–251. Wiley, New York (1961)

    MATH  Google Scholar 

  30. Carroll, R.: Quantum Theory, Deformation and Integrability. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  31. Floyd, E.R.: Interference, reduced action and trajectories. Found. Phys. 37, 1386 (2000). arXiv:quant-ph/0605120v3

  32. Hartman, T.E.: Tunneling of a wave packet. J. Appl. Phys. 33, 3427 (1962)

    Article  ADS  Google Scholar 

  33. Fletcher, J.R.: Time delay in tunnelling through a potential barrier. J. Phys. C 18, L55 (1985)

    Article  ADS  Google Scholar 

  34. Olkhovsky, V.S., Racami, E.: Recent developments in the time analysis of tunneling processes. Phys. Rep. 214, 339 (1992)

    Article  ADS  Google Scholar 

  35. Barton, G.: Quantum mechanics of the inverted oscillator potential. Ann. Phys. (NY) 166, 339 (1986)

    Article  MathSciNet  Google Scholar 

  36. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)

    MATH  Google Scholar 

  37. Stueckelberg, E.C.G.: La signification du temps propre en mécanique ondulatoire. Helv. Phys. Acta. 14, 51 (1941)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I heartily thank A. E. Faraggi and M. Matone for their invited, helpful comments on an earlier version, especially on Möbius transformations. Although we differ on compactification, their correspondence has always been cordial. I also thank one of the referees whose incisive comments contributed to significant improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Floyd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floyd, E.R. Action Quantization, Energy Quantization, and Time Parametrization. Found Phys 47, 392–429 (2017). https://doi.org/10.1007/s10701-017-0067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0067-6

Keywords

PhySH

Navigation