Skip to main content
Log in

EPR States and Bell Correlated States in Algebraic Quantum Field Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A mathematical rigorous definition of EPR states has been introduced by Arens and Varadarajan for finite dimensional systems, and extended by Werner to general systems. In the present paper we follow a definition of EPR states due to Werner. Then we show that an EPR state for incommensurable pairs is Bell correlated, and that the set of EPR states for incommensurable pairs is norm dense between two strictly space-like separated regions in algebraic quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arens, R., Varadarajan, V.S.: On the concept of Einstein-Podolsky-Rosen states and their structure. J. Math. Phys. 41, 638–651 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Baumgärtel, H.: Operator Algebraic Methods in Quantum Field Theory. Akademie Verlag, Berlin (1995)

    Google Scholar 

  3. Bohata, M., Hamhalter, J.: Maximal violation of Bell’s inequalities and Pauli spin matrices. J. Math. Phys. 50, 082101 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bohata, M., Hamhalter, J.: Bell’s correlations and spin systems. Found. Phys. 40, 1065–1075 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  6. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  7. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. 154, 201–202 (1991)

    Article  MathSciNet  Google Scholar 

  8. Halvorson, H.: The Einstein-Podolsky-Rosen state maximally violates Bell’s inequalities. Lett. Math. Phys. 53, 321–329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Halvorson, H., Clifton, R.: Maximal beable subalgebras of quantum mechanical observables. Int. J. Theor. Phys. 38, 2441–2484 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Halvorson, H., Clifton, R.: Generic Bell correlation between arbitrary local algebras in quantum field theory. J. Math. Phys. 41, 1711–1717 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Hofer-Szabó, G., Vecsernyés, P.: Noncommuting local common causes for correlations violating the Clauser-Horne inequality. J. Math. Phys. 53, 122301 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  12. Hofer-Szabó, G., Vecsernyés, P.: Bell inequality and common causal explanation in algebraic quantum field theory (2012). arXiv:1204.5708 [quant-ph]

  13. Huang, S.: On states of perfect correlation. J. Math. Phys. 49, 112101 (2008)

    Article  MathSciNet  Google Scholar 

  14. Landau, L.J.: On the violation of Bell’s inequality in quantum theory. Phys. Lett. 120, 54–56 (1987)

    Article  MathSciNet  Google Scholar 

  15. Ozawa, M.: Quantum perfect correlations. Ann. Phys. 321, 744–769 (2006)

    Article  ADS  MATH  Google Scholar 

  16. Ozawa, M., Kitajima, Y.: Reconstructing Bohr’s reply to EPR in algebraic quantum theory. Found. Phys. 42, 475–487 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic, Dordrecht (1998)

    Book  MATH  Google Scholar 

  18. Sakai, S.: C*-Algebra and W*-Algebras. Springer, New York (1971)

    Book  Google Scholar 

  19. Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Summers, S.J., Werner, R.: Bell’s inequalities and quantum field theory. I. General setting. J. Math. Phys. 28, 2440–2447 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Werner, R.F.: EPR states for von Neumann algebras (1999). arXiv:quant-ph/9910077

Download references

Acknowledgements

The author is supported by the JSPS KAKENHI, No.23701009 and the John Templeton Foundation Grant ID 35771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Kitajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitajima, Y. EPR States and Bell Correlated States in Algebraic Quantum Field Theory. Found Phys 43, 1182–1192 (2013). https://doi.org/10.1007/s10701-013-9739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9739-z

Keywords

Navigation