Skip to main content
Log in

Causality, Measurement, and Elementary Interactions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Signal causality, the prohibition of superluminal information transmission, is the fundamental property shared by quantum measurement theory and relativity, and it is the key to understanding the connection between nonlocal measurement effects and elementary interactions. To prevent those effects from transmitting information between the generating and observing process, they must be induced by the kinds of entangling interactions that constitute measurements, as implied in the Projection Postulate. They must also be nondeterministic as reflected in the Born Probability Rule. The nondeterminism of entanglement-generating processes explains why the relevant types of information cannot be instantiated in elementary systems, and why the sequencing of nonlocal effects is, in principle, unobservable. This perspective suggests a simple hypothesis about nonlocal transfers of amplitude during entangling interactions, which yields straightforward experimental consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  2. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  3. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MATH  Google Scholar 

  4. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982)

    Article  ADS  Google Scholar 

  5. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bell, J.S.: La nouvelle cuisine. In: Sarlemijn, A., Kroes, P. (eds.) Between Science and Technology. Elsevier, Oxford (1990)

    Google Scholar 

  7. Maudlin, T.: Quantum Non-locality and Relativity. 2nd edn. Blackwell Publishers, Malden (2002)

    Book  Google Scholar 

  8. Norsen, T.: J.S. Bell’s concept of local causality. arXiv:0707.0401v2 [quant-ph] (2010)

  9. Svetlichny, G.: Long range correlations and relativity: metatheoretic considerations. arXiv:quant-ph/9902064v1 (1999)

  10. Svetlichny, G.: Causality implies formal state collapse. Found. Phys. 33, 641 (2003)

    Article  MathSciNet  Google Scholar 

  11. Born, M.: On the quantum mechanics of collisions. Z. Phys. 37, 863–867 (1926)

    Article  ADS  Google Scholar 

  12. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)

    MathSciNet  MATH  Google Scholar 

  13. Bell, J.S.: Quantum mechanics for cosmologists. In: Isham, C., Penrose, R., Sciama, D. (eds.) Quantum Gravity 2, p. 611. Clarendon, Oxford (1981)

    Google Scholar 

  14. Elitzur, A.C.: Locality and indeterminism preserve the second law. Phys. Lett. A 167, 335 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  16. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  17. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  18. Popescu, S., Rohrlich, D.: Generic quantum nonlocality. Phys. Lett. A 166, 293 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  19. Popescu, S., Rohrlich, D.: Which states violate Bell’s inequality maximally? Phys. Lett. A 169, 411 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  20. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley-VCH, Weinheim (2005)

    Book  MATH  Google Scholar 

  21. Shimony, A.: Controllable and uncontrollable non-locality. In: Kamefuchi, S., et al. (ed.) Foundations of Quantum Mechanics in Light of the New Technology, pp. 225–230. Japan Physical Society, Tokyo (1983)

    Google Scholar 

  22. Shimony, A.: Events and processes in the quantum world. In: Penrose, R., Isham, C. (eds.) Quantum Concepts in Space and Time, pp. 182–203. Clarendon, Oxford (1986)

    Google Scholar 

  23. Svetlichny, G.: Spacetime structure and quantum mechanics. In: Schlichemaier, M., Strasburger, A., Twareque, A.S., Odzijewich, A. (eds.) XVIIth Workshop on Geometric Methods in Physics, Coherent States, Quantization, and Gravity, July 3–9, 1998, p. 235. Warsaw University Press, Warsaw (2001)

    Google Scholar 

  24. Elitzur, A.C., Dolev, S.: Quantum phenomena within a new theory of time. In: Elitzur, A.C., et al. (eds.) Quo Vadis Quantum Mechanics? Springer, Berlin (2005)

    Chapter  Google Scholar 

  25. Elitzur, A.C., Dolev, S.: Becoming as a bridge between quantum mechanics and relativity. In: Buccheri, R., et al. (eds.) Endophysics, Time, Quantum, and the Subjective, pp. 197–214. World Scientific, Singapore (2005)

    Google Scholar 

  26. Masanes, Ll., Acin, A., Gisin, N.: General properties of nonsignaling theories. Phys. Rev. A 73, 012112 (2006)

    Article  ADS  Google Scholar 

  27. Zhang, Q.-R.: Statistical separability and the consistency between quantum theory, relativity, and the causality. arXiv:quant-phys/0512150v1 (2005)

  28. Valentini, A.: Signal locality in hidden-variable theories. Phys. Lett. A 297, 273 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. de Broglie, L.: Tentative d’interpretation causale non-lineaire de la mechanique ondulatoire. Gautier-Villars, Paris (1956)

    Google Scholar 

  30. Bohm, D.: A suggested interpretation of quantum theory in terms of ‘hidden’ variables, I. Phys. Rev. 85, 166–179 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  31. Rohrlich, D.: Private communication

  32. Wooters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  33. Bradley, R.D.: How to lose your grip on reality? An attack on anti-realism in quantum theory. http://www.sfu.ca/philosophy/bradley/anti-realism_in_qm.pdf (2000)

  34. Gisin, N.: Non-realism: deep thought or a soft option? arXiv:0901.4255v2 [quant-ph] (2009)

  35. Gisin, N.: Is realism compatible with true randomness? arXiv:1012.2536v1 [quant-ph] (2009)

  36. Hume, D.: A Treatise of Human Nature. John Noon, London (1739)

    Google Scholar 

  37. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  38. ’t Hooft, G.: Emergent quantum mechanics and emergent symmetries. arXiv:0707.4568v1 [quant-ph] (2007)

  39. Albert, D.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992)

    Google Scholar 

  40. Cramer, J.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  41. Tomonaga, S.: On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys. 1, 27 (1946)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Schwinger, J.: Quantum electrodynamics. I. A covariant formulation. Phys. Rev. 74, 1439 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Bell, J.S.: Are there quantum jumps? In: Kilmister, C.W. (ed.) Schrödinger: Centenary Celebration of a Polymath, p. 41. Cambridge University Press, New York (1987)

    Google Scholar 

  44. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, New York (1993)

    Google Scholar 

  45. Bedingham, D.J.: Dynamical state reduction in an EPR experiment. arXiv:0907.2327v1 [quant-ph] (2009)

  46. Laura, R., Vanni, L.: Preferred basis without decoherence. arXiv:0812.0093v2 [quant-ph] (2008)

  47. Zurek, W.: Pointer basis of quantum apparatus: into what mixture does the wavepacket collapse? Phys. Rev. D 24, 1516 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  48. Gillis, E.J.: A Lorentz-invariant, microphysical theory of wave-function collapse. Ph.D. thesis, University of Colorado (1990)

  49. Rozanov, Y.A.: Probability Theory: A Concise Course. Dover, New York (1969)

    Google Scholar 

  50. Pearle, P.: How stands collapse I. arXiv:0611211v1 [quant-phys] (2006)

  51. Bohr, N.: Atomic Physics and Human Knowledge. Wiley, New York (1958)

    MATH  Google Scholar 

  52. Scully, M.O., Kim, Y.-H., Kulik, S.P., Shih, Y.H.: A delayed choice quantum eraser. Phys. Rev. Lett. 84, 1–5 (2000)

    Article  ADS  Google Scholar 

  53. Walborn, S., Terra Cunha, M.O., Padua, S., Monken, C.H.: Double-slit quantum eraser. Phys. Rev. A 65, 033818 (2002)

    Article  ADS  Google Scholar 

  54. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Cleve, R., Chuang, I.L.: Implementation of a three-quantum-bit search algorithm. arXiv:9910075v2 [quant-ph] (2000)

  55. Steffen, M., van Dam, W., Hogg, T., Breyta, G., Chuang, I.: Experimental implementation of an adiabatic quantum optimization algorithm. arXiv:0302057v2 [quant-phys] (2003)

  56. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257–427 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Pearle, P.: How stands collapse II. arXiv:quant-phys/0611212v3 (2007)

  59. Zurek, W.H.: Long range correlations and relativity: metatheoretic considerations. arXiv:quant-ph/0306072v1 (2003)

  60. Lemcke, R.M.: Sizing small organisms. Nature 229, 492–493 (1971)

    Article  ADS  Google Scholar 

  61. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  MATH  Google Scholar 

  62. Heisenberg, W.: Wandlungen in den Grundlagen der Naturwissenschaft. S. Hirzel Verlag, Zurich (1949)

    Google Scholar 

  63. Bacciagaluppi, G., Crull, E.: Heisenberg (and Schrödinger, and Pauli) on hidden variables. Stud. Hist. Philos. Mod. Phys. 40, 374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Bell, J.S.: On wave packet reduction in the Coleman-Hepp model. Helv. Phys. Acta 48, 93 (1975)

    MathSciNet  MATH  Google Scholar 

  65. Janssens, B., Maassen, H.: Information transfer implies state collapse. J. Phys. A, Math. Theor. 39, 9845 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Scully, M.O., Druhl, K.: Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25, 2208 (1982)

    Article  ADS  Google Scholar 

  67. Scully, M.O., Englert, B.G., Schwinger, J.: Spin coherence and Humpty-Dumpty. III. The effects of observation. Phys. Rev. A 40, 1775 (1989)

    Article  ADS  Google Scholar 

  68. Scully, M.O., Englert, B.G., Walther, H.: Quantum optical tests of complementarity. Nature 351, 111 (1991)

    Article  ADS  Google Scholar 

  69. Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  70. Hartle, J.B.: The quasiclassical realms of this quantum universe. arXiv:0806.3776v3 [quant-ph] (2008)

  71. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  72. Bell, J.S.: Speakable and unspeakable in quantum mechanics. Phys. Rep. 137, 7 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Gillis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillis, E.J. Causality, Measurement, and Elementary Interactions. Found Phys 41, 1757–1785 (2011). https://doi.org/10.1007/s10701-011-9576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9576-x

Keywords

Navigation