Skip to main content
Log in

A Classical Explanation of Quantization

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the context of our recently developed emergent quantum mechanics, and, in particular, based on an assumed sub-quantum thermodynamics, the necessity of energy quantization as originally postulated by Max Planck is explained by means of purely classical physics. Moreover, under the same premises, also the energy spectrum of the quantum mechanical harmonic oscillator is derived. Essentially, Planck’s constant h is shown to be indicative of a particle’s “zitterbewegung” and thus of a fundamental angular momentum. The latter is identified with quantum mechanical spin, a residue of which is thus present even in the non-relativistic Schrödinger theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grössing, G.: The vacuum fluctuation theorem: exact Schrödinger equation via nonequilibrium thermodynamics. Phys. Lett. A 372(25), 4556–4563 (2008). arXiv:0711.4945v2

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Grössing, G.: On the thermodynamic origin of the quantum potential. Physica A 388, 811–823 (2009). arXiv:0808.3539v1

    Article  MathSciNet  ADS  Google Scholar 

  3. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966)

    Article  ADS  Google Scholar 

  4. Fritsche, L., Haugk, M.: A new look at the derivation of the Schrödinger equation from Newtonian mechanics. Ann. Phys. (Leipz.) 12(6), 371–403 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Guerra, F., Marra, R.: Stochastic mechanics of spin-1/2 particles. Phys. Rev. D 30(12), 2579–2584 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  6. de la Peña, L., Cetto, A.M.: The quantum dice: an introduction to stochastic electrodynamics. In: Fundamental Theories of Physics, vol. 75, Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  7. Boyer, T.H.: A brief survey of stochastic electrodynamics. In: Barut, A.O. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics, pp. 45–63. Plenum, New York (1980)

    Google Scholar 

  8. Haisch, B., Rueda, A., Puthoff, H.E.: Inertia as a zero-point-field Lorentz force. Phys. Rev. A 49(2), 678–694 (1994)

    Article  ADS  Google Scholar 

  9. Grössing, G., Fussy, S., Mesa Pascasio, J., Schwabl, H.: Emergence and collapse of quantum mechanical superposition: orthogonality of reversible dynamics and irreversible diffusion. Physica A 389(21), 4473–4484 (2010). arXiv:1004.4596v1

    Article  ADS  Google Scholar 

  10. Grössing, G.: Sub-quantum thermodynamics as a basis of emergent quantum mechanics. Entropy 12(9), 1975–2044 (2010). http://www.mdpi.com/1099-4300/12/9/1975/

    Article  MathSciNet  MATH  Google Scholar 

  11. Grössing, G., Fussy, S., Mesa Pascasio, J., Schwabl, H.: Elements of sub-quantum thermodynamics: quantum motion as ballistic diffusion. arXiv:1005.1058v2 (2010). To be published; based on a talk at the Fifth International Workshop DICE2010, Castiglioncello, Tuscany, September 13–17, 2010

  12. Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208–208 (2005)

    Article  ADS  Google Scholar 

  13. Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97(154), 101 (2006)

    Google Scholar 

  14. Protière, S., Boudaoud, A., Couder, Y.: Particle-wave association on a fluid interface. J. Fluid Mech. 554, 85–108 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Eddi, A., Fort, E., Moisy, F., Couder, Y.: Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett. 102(204), 401 (2009)

    Google Scholar 

  16. Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y.: Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. USA 107(41), 17,515–17,520 (2010)

    Article  Google Scholar 

  17. Coffey, W.T., Kalmykov, Y.P., Waldron, J.T.: The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering. In: World Scientific Series in Contemporary Chemical Physics, vol. 14, 2 edn., World Scientific, Singapore (2004)

    Google Scholar 

  18. Verlinde, E.P.: On the origin of gravity and the laws of Newton (2010). arXiv:1001.0785v1

  19. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004v2

    Article  ADS  Google Scholar 

  20. Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49, 1613–1617 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  21. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics: Mainly Mechanics, Radiation and Heat, vol. 1. Addison-Wesley, Reading (1966)

    Google Scholar 

  22. Esposito, S.: On the role of spin in quantum mechanics. Found. Phys. Lett. 12(2), 165–177 (1999). arXiv:quant-ph/9902019v1

    Article  MathSciNet  Google Scholar 

  23. Fritsche, L., Haugk, M.: Stochastic foundation of quantum mechanics and the origin of particle spin (2009). arXiv:0912.3442v1

  24. Salesi, G.: Spin and Madelung fluid. Mod. Phys. Lett. A 11(22), 1815–1823 (1996). arXiv:0906.4147v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Yang, C.: Modeling quantum harmonic oscillator in complex domain. Chaos Solitons Fractals 30(2), 342–362 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 57(1), 98–105 (1998)

    Article  ADS  Google Scholar 

  27. Salesi, G., Recami, E.: A velocity field and operator for spinning particles in (nonrelativistic) quantum mechanics. Found. Phys. 28(5), 763–773 (1998)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Grössing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grössing, G., Mesa Pascasio, J. & Schwabl, H. A Classical Explanation of Quantization. Found Phys 41, 1437–1453 (2011). https://doi.org/10.1007/s10701-011-9556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9556-1

Keywords

Navigation