Skip to main content
Log in

Compact Time and Determinism for Bosons: Foundations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Free bosonic fields are investigated at a classical level by imposing their characteristic de Broglie periodicities as constraints. In analogy with finite temperature field theory and with extra-dimensional field theories, this compactification naturally leads to a quantized energy spectrum. As a consequence of the relation between periodicity and energy arising from the de Broglie relation, the compactification must be regarded as dynamical and local. The theory, whose foundamental set-up is presented in this paper, turns out to be consistent with special relativity and in particular respects causality. The non trivial classical dynamics of these periodic fields show remarkable overlaps with ordinary quantum field theory. This can be interpreted as a generalization of the AdS/CFT correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A.: Principe de relativité. Arch. Sci. Phys. Nat. 29 (1910)

  2. Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (1992), 188 p.

    MATH  Google Scholar 

  3. Zee, A.: Quantum Field Theory in a Nutshell. Princeton Univ. Press, Princeton (2003), 518 p.

    MATH  Google Scholar 

  4. Zinn-Justin, J.: Quantum field theory at finite temperature: An introduction. hep-ph/0005272

  5. Kapusta, J.I.: Finite temperature field theory

  6. Penrose, R.: Conformal boundaries, quantum geometry, and cyclic cosmology. Prepared for Beyond Einstein 2008 Conference, Mainz, Germany, 22–26 Sept. 2008

  7. Steinhardt, P.J., Turok, N.: The cyclic universe: An informal introduction. Nucl. Phys. Proc. Suppl. 124, 38–49 (2003). astro-ph/0204479

    Article  ADS  Google Scholar 

  8. Nielsen, H.B., Ninomiya, M.: Intrinsic periodicity of time and non-maximal entropy of universe. Int. J. Mod. Phys. A 21, 5151–5162 (2006). hep-th/0601021

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Nielsen, H.B., Ninomiya, M.: Compactified time and likely entropy: World inside time machine: Closed time-like curve. hep-th/0601048

  10. Kong, D.-X., Liu, K.: Time-periodic solutions of the Einstein’s field equations. 0805.1100

  11. Henneaux, M.: Boundary terms in the AdS/CFT correspondence for spinor fields. hep-th/9902137

  12. Csaki, C., Grojean, C., Murayama, H., Pilo, L., Terning, J.: Gauge theories on an interval: Unitarity without a Higgs. Phys. Rev. D 69, 055006 (2004). hep-ph/0305237

    Article  ADS  Google Scholar 

  13. Matsubara, T.: A new approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Kaluza, T.: On the problem of unity in physics. Sitz. ber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966–972 (1921)

    Google Scholar 

  15. Klein, O.: Quantum theory and five-dimensional theory of relativity. Z. Phys. 37, 895–906 (1926)

    Article  ADS  Google Scholar 

  16. Dvali, G.R., Gabadadze, G., Kolanovic, M., Nitti, F.: The power of brane-induced gravity. Phys. Rev. D 64, 084004 (2001). hep-ph/0102216

    Article  ADS  Google Scholar 

  17. Carena, M., Tait, T.M.P., Wagner, C.E.M.: Branes and orbifolds are opaque. Acta Phys. Pol. B 33, 2355 (2002). hep-ph/0207056

    MATH  MathSciNet  ADS  Google Scholar 

  18. Karch, A., Katz, E., Son, D.T., Stephanov, M.A.: Linear confinement and AdS/QCD. Phys. Rev. D 74, 015005 (2006). hep-ph/0602229

    Article  ADS  Google Scholar 

  19. Broglie, L.d.: Philos. Mag. 47, 446 (1924)

    Google Scholar 

  20. Broglie, L.d.: Ann. Phys. 3, 22 (1925)

    MATH  Google Scholar 

  21. Catillon, P., Cue, N., Gaillard, M.J., Genre, R., Gouanère, M., Kirsch, R.G., Poizat, J.-C., Remillieux, J., Roussel, L., Spighel, M.: A search for the de Broglie particle internal clock by means of electron channeling. Found. Phys. 38, 659–664 (2008)

    Article  ADS  Google Scholar 

  22. ’t Hooft, G.: Determinism in free bosons. Int. J. Theor. Phys. 42, 355–361 (2003). hep-th/0104080

    Article  MATH  MathSciNet  Google Scholar 

  23. ’t Hooft, G.: How does God play dice? (Pre-)determinism at the Planck scale. hep-th/0104219

  24. ’t Hooft, G.: Quantum mechanics and determinism. hep-th/0105105

  25. Arkani-Hamed, N., Cohen, A.G., Georgi, H.: (De)constructing dimensions. Phys. Rev. Lett. 86, 4757–4761 (2001). hep-th/0104005

    Article  MathSciNet  ADS  Google Scholar 

  26. Berezhiani, Z., Gorsky, A., Kogan, I.I.: On the deconstruction of time. JETP Lett. 75, 530–533 (2002). hep-th/0203016

    Article  ADS  Google Scholar 

  27. Elze, H.-T., Schipper, O.: Time without time: A stochastic clock model. Phys. Rev. D 66, 044020 (2002). gr-qc/0205071

    Article  MathSciNet  ADS  Google Scholar 

  28. Elze, H.-T.: Quantum mechanics emerging from timeless classical dynamics. quant-ph/0306096

  29. Elze, H.-T.: Quantum mechanics and discrete time from ‘timeless’ classical dynamics. Lect. Notes Phys. 633, 196 (2004). gr-qc/0307014

    Article  MathSciNet  ADS  Google Scholar 

  30. Elze, H.-T.: Emergent discrete time and quantization: Relativistic particle with extradimensions. Phys. Lett. A 310, 110–118 (2003). gr-qc/0301109

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Nikolic, H.: Quantum mechanics: Myths and facts. Found. Phys. 37, 1563–1611 (2007). quant-ph/0609163

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Dolce, D.: Compact time and determinism for bosons. 0903.3680

  33. Ferber, R.: A missing link: What is behind de Broglie’s periodic phenomenon? Found. Phys. Lett. 9(6), 575–586 (1996)

    Article  MathSciNet  Google Scholar 

  34. Föhlisch, A., Feuler, P., Hennies, F., Fink, A., Manzel, D., Sanchez-Portal, D., Echenique, P.-M., Wurth, W.: Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005)

    Article  ADS  Google Scholar 

  35. Weinberg, S.: The Quantum Theory of Fields. Modern applications, vol. 2. Cambridge Univ. Press, Cambridge (1996), 489 p.

    Google Scholar 

  36. Feynman, R.P.: The principle of least action in quantum mechanics

  37. Rosenstein, B., Horwitz, L.P.: probability current versus charge current of a relativistic particle. J. Phys. A 18, 2115–2121 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  38. Nikolic, H.: Is quantum field theory a genuine quantum theory? Foundational insights on particles and strings. Europhys. Lett. 85, 20003 (2009). 0705.3542

    Article  ADS  Google Scholar 

  39. Nikolic, H.: Probability in relativistic Bohmian mechanics of particles and strings. Found. Phys. 38, 869–881 (2008). 0804.4564

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. ’t Hooft, G.: The mathematical basis for deterministic quantum mechanics. J. Phys.: Conf. Ser. 67, 15 (2007). quant-ph/0604008

    Google Scholar 

  41. ’t Hooft, G.: Emergent quantum mechanics and emergent symmetries. AIP Conf. Proc. 957, 154–163 (2007). 0707.4568

    Article  MathSciNet  ADS  Google Scholar 

  42. Jaffe, R.L.: The Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005). hep-th/0503158

    Article  ADS  Google Scholar 

  43. Rayleigh, L.: The problem of the Random Walk. Nature 72, 318 (1905)

    Article  ADS  Google Scholar 

  44. ’t Hooft, G.: Entangled quantum states in a local deterministic theory (2009)

  45. ’t Hooft, G.: Quantum gravity without space-time singularities or horizons (2009)

  46. Elze, H.-T.: A quantum field theory as emergent description of constrained supersymmetric classical dynamics. Braz. J. Phys. 35(2A+2B), 205–529 (2005). hep-th/0508095

    Google Scholar 

  47. Gozzi, E., Reuter, M., Thacker, W.D.: Symmetries of the classical path integral on a generalized phase space manifold. Phys. Rev. D 46, 757–765 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  48. Gozzi, E., Mauro, D.: Quantization as a dimensional reduction phenomenon. AIP Conf. Proc. 844, 158–176 (2006). quant-ph/0601209

    Article  MathSciNet  ADS  Google Scholar 

  49. Johnson, S.C., Gutierrez, T.D.: Visualizing the phonon wave function. Am. J. Phys. 70(3), 227–237 (2002)

    Article  ADS  Google Scholar 

  50. Satz, H.: The thermodynamics of quarks and gluons. 0803.1611

  51. Magas, V.K., Anderlik, A., Anderlik, C., Csernai, L.P.: Non-equilibrated post freeze out distributions. Eur. Phys. J. C 30, 255–261 (2003). nucl-th/0307017

    Article  ADS  Google Scholar 

  52. Pomarol, A.: Grand unified theories without the desert. Phys. Rev. Lett. 85, 4004–4007 (2000). hep-ph/0005293

    Article  ADS  Google Scholar 

  53. Arkani-Hamed, N., Porrati, M., Randall, L.: Holography and phenomenology. J. High Energy Phys. 08, 017 (2001). hep-th/0012148

    Article  MathSciNet  ADS  Google Scholar 

  54. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). hep-th/9711200

    MATH  MathSciNet  ADS  Google Scholar 

  55. Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998). hep-th/9803131

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatello Dolce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolce, D. Compact Time and Determinism for Bosons: Foundations. Found Phys 41, 178–203 (2011). https://doi.org/10.1007/s10701-010-9485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9485-4

Keywords

Navigation