Skip to main content
Log in

On Epstein’s Trajectory Model of Non-Relativistic Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In 1952 Bohm presented a theory about non-relativistic point-particles that move deterministically along trajectories and showed how it reproduces the predictions of standard quantum theory. This theory was actually presented before by de Broglie in 1926, but Bohm’s particular formulation of the theory inspired Epstein to come up with a different trajectory model. The aim of this paper is to examine the empirical predictions of this model. It is found that the trajectories in this model are in general very different from those in the de Broglie-Bohm theory. In certain cases they even seem bizarre and rather unphysical. Nevertheless, it is argued that the model seems to reproduce the predictions of standard quantum theory (just as the de Broglie-Bohm theory).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Broglie, L.: La nouvelle dynamique des quanta. In: Électrons et Photons: Rapports et Discussions du Cinquième Conseil de Physique, Gauthier-Villars, Paris, 105 (1928). English translation: G. Bacciagaluppi and A. Valentini, Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009). arXiv:quant-ph/0609184

    Google Scholar 

  2. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables, I. Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables, II. Phys. Rev. 85, 180 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  4. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843 (1992). arXiv:quant-ph/0308039

    Article  MATH  ADS  Google Scholar 

  5. Goldstein, S., Struyve, W.: On the uniqueness of quantum equilibrium in Bohmian mechanics. J. Stat. Phys. 128, 1197 (2007). arXiv:0704.3070 [quant-ph]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bohm, D.: Proof that probability density approaches |ψ|2 in causal interpretation of the quantum theory. Phys. Rev. 89, 458 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem, I. Phys. Lett. A 156, 5 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, New York (1993)

    Google Scholar 

  9. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  10. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the role of operators as observables in quantum theory. J. Stat. Phys. 116, 959 (2004). arXiv:quant-ph/0308038

    Article  MATH  ADS  Google Scholar 

  11. Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, Berlin (2009)

    MATH  Google Scholar 

  12. Epstein, S.T.: The causal interpretation of quantum mechanics. Phys. Rev. 89, 319 (1952)

    Article  ADS  Google Scholar 

  13. Epstein, S.T.: The causal interpretation of quantum mechanics. Phys. Rev. 91, 985 (1953)

    Article  MATH  ADS  Google Scholar 

  14. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: On the common structure of Bohmian mechanics and the Ghirardi Rimini Weber theory. Br. J. Philos. Sci. 59, 353 (2008). arXiv:quant-ph/0603027

    Article  MATH  Google Scholar 

  15. Struyve, W., Valentini, A.: de Broglie-Bohm guidance equations for arbitrary Hamiltonians. J. Phys. A 42, 035301 (2009). arXiv:0808.0290 [quant-ph]

    Article  MathSciNet  ADS  Google Scholar 

  16. Bohm, D.: Comments on a letter concerning the causal interpretation of the quantum theory. Phys. Rev. 89, 319 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Deotto, E., Ghirardi, G.C.: Bohmian mechanics revisited. Found. Phys. 28, 1 (1998). arXiv:quant-ph/9704021

    Article  MathSciNet  Google Scholar 

  18. Holland, P.R.: New trajectory interpretation of quantum mechanics. Found. Phys. 28, 881 (1998)

    Article  MathSciNet  Google Scholar 

  19. Goldstein, S., Taylor, J., Tumulka, R., Zanghì, N.: Are all particles identical? J. Phys. A 38, 1567 (2005). arXiv:quant-ph/0405039

    MATH  MathSciNet  ADS  Google Scholar 

  20. de Polavieja, G.G.: A causal quantum theory in phase space. Phys. Lett. A 220, 303 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. de Polavieja, G.G.: Nonstatistical quantum-classical correspondence in phase space. Found. Phys. Lett. 9, 411 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ward Struyve.

Additional information

Postdoctoral Fellow FWO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struyve, W. On Epstein’s Trajectory Model of Non-Relativistic Quantum Mechanics. Found Phys 40, 1700–1711 (2010). https://doi.org/10.1007/s10701-010-9475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9475-6

Keywords

Navigation