Skip to main content
Log in

Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is pointed out that relativistic classical electron theory with classical electromagnetic zero-point radiation has a scaling symmetry which is suitable for understanding the equilibrium behavior of classical thermal radiation at a spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical electron theory, the masses of the particles are the only scale-giving parameters associated with mechanics while the action-angle variables are scale invariant. The theory thus separates the interaction of the action variables of matter and radiation from the scale-giving parameters. Due to this separation, classical zero-point radiation is invariant under scattering by the charged particles of relativistic classical electron theory. The basic ideas of the matter-radiation interaction are illustrated in a simple relativistic classical electromagnetic example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorentz, H.A.: The Theory of Electrons. Dover, New York (1952)

    Google Scholar 

  2. Rosenfeld, L.: Theory of Electrons. Dover, New York (1965)

    Google Scholar 

  3. Boyer, T.H.: Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 11, 790–808 (1975)

    ADS  Google Scholar 

  4. de la Pena, L., Cetto, A.M.: The Quantum Dice—An Introduction to Stochastic Electrodynamics. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  5. Cole, D.C., Zou, Y.: Quantum mechanical ground state of hydrogen obtained from classical electrodynamics. Phys. Lett. A 317, 12–20 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  6. Boyer, T.H.: Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 182, 1374–1383 (1969)

    Article  ADS  Google Scholar 

  7. Marshall, T.W.: Brownian motion of a mirror. Phys. Rev. D 24, 1509–1515 (1981)

    ADS  Google Scholar 

  8. Boyer, T.H.: Classical statistical thermodynamics and electromagnetic zero-point radiation. Phys. Rev. 186, 1304–1318 (1969)

    Article  ADS  Google Scholar 

  9. Boyer, T.H.: Derivation of the Planck radiation spectrum as an interpolation formula in classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 27, 2906–2911 (1983)

    ADS  Google Scholar 

  10. Boyer, T.H.: Reply to ‘Comment on Boyer’s derivation of the Planck spectrum’. Phys. Rev. D 29, 2418–2419 (1984)

    ADS  Google Scholar 

  11. Boyer, T.H.: Conjectured derivation of the Planck spectrum from Casimir energies. J. Phys. A, Math. Gen. 36, 7425–7440 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. van Vleck, J.H.: The absorption of radiation by multiply periodic orbits, and its relation to the correspondence principle and the Rayleigh-Jeans law: Part II. Calculation of absorption by multiply periodic orbits. Phys. Rev. 24, 347–365 (1924)

    Article  ADS  Google Scholar 

  13. Boyer, T.H.: Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator. Phys. Rev. D 13, 2832–2845 (1976)

    ADS  Google Scholar 

  14. Boyer, T.H.: Statistical equilibrium of nonrelativistic multiply periodic classical systems and random classical electromagnetic radiation. Phys. Rev. A 18, 1228–1237 (1978)

    Article  ADS  Google Scholar 

  15. Blanco, R., Pesquera, L., Santos, E.: Equilibrium between radiation and matter for classical relativistic multiperiodic systems. Derivation of Maxwell-Boltzmann distribution from Rayleigh-Jeans spectrum. Phys. Rev. D 27, 1254–1287 (1983)

    MathSciNet  ADS  Google Scholar 

  16. Blanco, R., Pesquera, L., Santos, E.: Equilibrium between radiation and matter for classical relativistic multiperiodic systems. II. Study of radiative equilibrium with Rayleigh-Jeans radiation. Phys. Rev. D 29, 2240–2254 (1984)

    MathSciNet  ADS  Google Scholar 

  17. Boyer, T.H.: Scaling symmetry and thermodynamic equilibrium for classical electromagnetic radiation. Found. Phys. 19, 1371–1383 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  18. Currie, D.G., Jordan, T.F., Sudarshan, E.C.G.: Relativistic invariance and Hamiltonian theories of interacting particles. Rev. Mod. Phys. 34, 350–375 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  19. Boyer, T.H.: Illustrating some implications of the conservation laws in relativistic mechanics. Am. J. Phys. 77, 562–569 (2009)

    Article  ADS  Google Scholar 

  20. Power, E.A.: Introductory Quantum Electrodynamics. Elsevier, New York (1964)

    MATH  Google Scholar 

  21. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1981)

    Google Scholar 

  22. Born, M.: The Mechanics of the Atom, pp. 66–71. Ungar, New York (1970)

    Google Scholar 

  23. Boyer, T.H.: Scaling symmetries of scatterers of classical zero-point radiation. J. Phys. A, Math. Theor. 40, 9635–9642 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Jackson, J.D.: Classical Electrodynamics, 2nd edn., p. 695. Wiley, New York (1999)

    MATH  Google Scholar 

  25. Reif, R.: Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York (1985)

    Google Scholar 

  26. Eisberg, R., Resnick, R.: Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd edn. Wiley, New York (1985)

    Google Scholar 

  27. Marshall, T.W.: Random electrodynamics. Proc. R. Soc. A 276, 475–491 (1963)

    Article  MATH  ADS  Google Scholar 

  28. Marshall, T.W.: Statistical electrodynamics. Proc. Camb. Philos. Soc. 61, 537–546 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy H. Boyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, T.H. Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation. Found Phys 40, 1102–1116 (2010). https://doi.org/10.1007/s10701-010-9436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9436-0

Keywords

Navigation