Skip to main content
Log in

Black Hole Thermodynamics and Lorentz Symmetry

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  2. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. C 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. Dubovsky, S.L., Sibiryakov, S.M.: Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind. Phys. Lett. B 638, 509 (2006). arXiv:hep-th/0603158

    Article  MathSciNet  ADS  Google Scholar 

  4. Eling, C., Foster, B.Z., Jacobson, T., Wall, A.C.: Lorentz violation and perpetual motion. Phys. Rev. D 75, 101502 (2007). arXiv:hep-th/0702124

    Article  ADS  Google Scholar 

  5. Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cimento 1, 252 (1969)

    Google Scholar 

  6. Penrose, R.: Gen. Relativ. Gravit. 34, 1141 (2002) (reprinted of Ref. [5])

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Unruh, W.G., Wald, R.M.: Acceleration radiation and generalized second law of thermodynamics. Phys. Rev. D 25, 942 (1982)

    Article  ADS  Google Scholar 

  8. Unruh, W.G., Wald, R.M.: Entropy bounds, acceleration radiation, and the generalized second law. Phys. Rev. D 27, 2271 (1983)

    Article  ADS  Google Scholar 

  9. Marolf, D., Sorkin, R.D.: On the status of highly entropic objects. Phys. Rev. D 69, 024014 (2004). arXiv:hep-th/0309218

    Article  ADS  Google Scholar 

  10. Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Trincherini, E., Villadoro, G.: A measure of de sitter entropy and eternal inflation. J. High Energy Phys. 0705, 055 (2007). arXiv:0704.1814 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  11. Sagi, E., Bekenstein, J.D.: Black holes in the TeVeS theory of gravity and their thermodynamics. Phys. Rev. D 77, 024010 (2008). arXiv:0708.2639 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  12. Betschart, G., Kant, E., Klinkhamer, F.R.: Lorentz violation and black-hole thermodynamics. Nucl. Phys. B 815, 198 (2009). arXiv:0811.0943 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  13. Mukohyama, S.: Can ghost condensate decrease entropy? arXiv:0908.4123 [hep-th] (2009)

  14. Sewell, G.L.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141, 201–224 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  15. Unruh, W.G., Weiss, N.: Acceleration radiation in interacting field theories. Phys. Rev. D 29, 1656 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  16. Groot Nibbelink, S., Pospelov, M.: Lorentz violation in supersymmetric field theories. Phys. Rev. Lett. 94, 081601 (2005). arXiv:hep-ph/0404271

    Article  MathSciNet  ADS  Google Scholar 

  17. Bolokhov, P.A., Nibbelink, S.G., Pospelov, M.: Lorentz violating supersymmetric quantum electrodynamics. Phys. Rev. D 72, 015013 (2005). arXiv:hep-ph/0505029

    Article  ADS  Google Scholar 

  18. Connes, A., Rovelli, C.: Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories. Class. Quantum Gravity 11, 2899 (1994). arXiv:gr-qc/9406019

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted Jacobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, T., Wall, A.C. Black Hole Thermodynamics and Lorentz Symmetry. Found Phys 40, 1076–1080 (2010). https://doi.org/10.1007/s10701-010-9423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9423-5

Keywords

Navigation