Skip to main content
Log in

On the Complementarity of the Quadrature Observables

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate the coupling properties of pairs of quadrature observables, showing that, apart from the Weyl relation, they share the same coupling properties as the position-momentum pair. In particular, they are complementary. We determine the marginal observables of a covariant phase space observable with respect to an arbitrary rotated reference frame, and observe that these marginal observables are unsharp quadrature observables. The related distributions constitute the Radon transform of a phase space distribution of the covariant phase space observable. Since the quadrature distributions are the Radon transform of the Wigner function of a state, we also exhibit the relation between the quadrature observables and the tomography observable, and show how to construct the phase space observable from the quadrature observables. Finally, we give a method to measure together with a single measurement scheme any complementary pair of quadrature observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L.: Some trends and problems in quantum probability. In: Accardi, L., Frigerio, A., Giorni, V. (eds.) Quantum Probability and Applications to the Quantum Theory of Irreversible Processes. Lecture Notes in Mathematics, vol. 1055, pp. 1–19. Springer, Berlin (1984)

    Chapter  Google Scholar 

  2. Albini, P., De Vito, E., Toigo, A.: Quantum homodyne tomography as an informationally complete positive-operator-valued measure. J. Phys. A, Math. Theor. 42, 295302 (2009)

    Article  Google Scholar 

  3. Ali, S.T., Doebner, H.D.: On the equivalence of nonrelativistic quantum mechanics based upon sharp and fuzzy measurements. J. Math. Phys. 17, 1105–1111 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ali, S.T., Prugovečki, E.: Classical and quantum statistical mechanics in a common Liouville space. Physica A 89, 501–521 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928)

    Article  MATH  ADS  Google Scholar 

  6. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935)

    Article  MATH  ADS  Google Scholar 

  7. Busch, P., Cassinelli, G., Lahti, P.: On the quantum theory of sequential measurements. Found. Phys. 20, 757–778 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  8. Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics. Springer, Berlin (1997). 2nd corrected printing

    Google Scholar 

  9. Busch, P., Kiukas, J., Lahti, P.: Measuring position and momentum together. Phys. Lett. A 372, 4379–4380 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. Busch, P., Lahti, P.: The complementarity of quantum observables: theory and experiments. Riv. Nuovo Cimento 18(4), 1 (1995)

    Article  MathSciNet  Google Scholar 

  11. Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurements. Springer, Berlin (1996). 2nd revised edn.

    Google Scholar 

  12. Carmeli, C., Heinonen, T., Toigo, A.: On the coexistence of position and momentum observables. J. Phys. A, Math. Gen. 38, 5253–5266 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Cassinelli, G., D’Ariano, G.M., De Vito, E., Levrero, A.: Group theoretical quantum tomography. J. Math. Phys. 41, 7940–7951 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Cassinelli, G., Varadarajan, V.S.: On Accardi’s notion of complementary observables. Infinit. Dimens. Anal. Quantum Probab. Relat. Top. 5, 135–144 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239–260 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Dvurečenskij, A., Pulmannová, S.: Uncertainty principle and joint distributions of observables. Ann. Inst. Henri Poincaré Phys. Thoer. 42, 253–65 (1985)

    MATH  Google Scholar 

  17. Kiukas, J., Lahti, P.: A note on the measurement of phase space observables with an eight-port homodyne detector. J. Mod. Opt. 55, 1891-1898 (2008)

    MathSciNet  ADS  Google Scholar 

  18. Kiukas, J., Lahti, P., Pellonpää, J.-P.: A proof for the informational completeness of the rotated quadrature observables. J. Phys. A, Math. Theor. 41, 175206 (2008). (11pp)

    Article  ADS  Google Scholar 

  19. Kiukas, J., Lahti, P., Schultz, J.: Position and momentum tomography. Phys. Rev. A 79, 052119 (2009)

    Article  ADS  Google Scholar 

  20. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  21. Lahti, P., Pellonpää, J.-P.: Covariant phase observables in quantum mechanics. J. Math. Phys. 40, 4688–4698 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  22. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  23. Ludwig, G.: Foundations of Quantum Mechanics I. Springer, Berlin (1983)

    MATH  Google Scholar 

  24. Pellonpää, J.-P.: Quantum tomography, phase space observables, and generalized Markov kernels. J. Phys. A, Math. Theor. 42, 465303 (2009)

    Article  ADS  Google Scholar 

  25. Reichenbach, H.: Philosophic Foundations of Quantum Mechanics. University of California Press, Berkeley (1944)

    Google Scholar 

  26. von Neumann, J.: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570–578 (1931)

    Article  MathSciNet  Google Scholar 

  27. von Weizsäcker, C.F.: Quantum theory and space-time. In: Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics, pp. 223–237. World Scientific, Singapore (1985)

    Google Scholar 

  28. Ylinen, K.: On a theorem of Gudder on joint distributions of observables. In: Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics, pp. 691–694. World Scientific, Singapore (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Lahti.

Additional information

Dedicated to Peter Mittelstaedt in honour of his eightieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahti, P., Pellonpää, JP. On the Complementarity of the Quadrature Observables. Found Phys 40, 1419–1428 (2010). https://doi.org/10.1007/s10701-009-9373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9373-y

Navigation