Skip to main content
Log in

Vacuum Energy as the Origin of the Gravitational Constant

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We develop a geometro-dynamical approach to the cosmological constant problem (CCP) by invoking a geometry induced by the energy-momentum tensor of vacuum, matter and radiation. The construction, which utilizes the dual role of the metric tensor that it structures both the spacetime manifold and energy-momentum tensor of the vacuum, gives rise to a framework in which the vacuum energy induced by matter and radiation, instead of gravitating, facilitates the generation of the gravitational constant. The non-vacuum sources comprising matter and radiation gravitate normally. At the level of classical gravitation, the mechanism deadens the CCP yet quantum gravitational effects, if strong, can keep it existent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A.: Sitz.ber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1917, 142 (1917)

    Google Scholar 

  2. Einstein, A.: Ann. Phys. 49, 769 (1916) [Ann. Phys. 14, 517 (2005)]

    Article  Google Scholar 

  3. Riess, A.G., et al. (Supernova Search Team Collaboration): Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. de Bernardis, P., et al. (Boomerang Collaboration): Nature 404, 955 (2000)

    Article  Google Scholar 

  5. Freedman, W.L., et al. (HST Collaboration): Astrophys. J. 553, 47 (2001)

    Article  ADS  Google Scholar 

  6. Spergel, D.N., et al. (WMAP Collaboration): Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  7. Knop, R.A., et al. (Supernova Cosmology Project Collaboration): Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  8. Tegmark, M., et al. (SDSS Collaboration): Astrophys. J. 606, 702 (2004)

    Article  ADS  Google Scholar 

  9. Astier, P., et al. (The SNLS Collaboration): Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  10. Spergel, D.N., et al. (WMAP Collaboration): Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  11. Zeldovich, Y.B.: JETP Lett. 6, 316 (1967) [Pisma Zh. Eksp. Teor. Fiz. 6, 883 (1967)]

    ADS  Google Scholar 

  12. Sahni, V., Krasinski, A., Zeldovich, Y.B.: Gen. Relativ. Gravity 40, 1557 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Nobbenhuis, S.: Found. Phys. 36, 613 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Carroll, S.M.: Living Rev. Relativ. 4, 1 (2001)

    ADS  Google Scholar 

  16. Peebles, P., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  17. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Polchinski, J.: The cosmological constant and the string landscape (2006). arXiv:hep-th/0603249

  19. Padmanabhan, T.: Gen. Relativ. Gravity 40, 529 (2008). arXiv:0705.2533 [gr-qc]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Mukohyama, S., Randall, L.: Phys. Rev. Lett. 92, 211302 (2004)

    Article  ADS  Google Scholar 

  21. Vollick, D.N.: Phys. Rev. D 68, 063510 (2003)

    Article  ADS  Google Scholar 

  22. Hirayama, T., Holdom, B.: Phys. Rev. D 70, 123526 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  23. Dreyer, O.: Background independent quantum field theory and the cosmological constant problem. arXiv:hep-th/0409048 (2004)

  24. Erdem, R.: Phys. Lett. B 621, 11 (2005)

    Article  ADS  Google Scholar 

  25. Erdem, R.: Phys. Lett. B 639, 348 (2006)

    Article  ADS  Google Scholar 

  26. Alexander, S.: Phys. Lett. B 629, 53 (2005)

    Article  ADS  Google Scholar 

  27. Kaplan, D.E., Sundrum, R.: J. High Energy Phys. 0607, 042 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. Freese, K., Liu, J.T., Spolyar, D.: Phys. Lett. B 634, 119 (2006)

    Article  ADS  Google Scholar 

  29. Bauer, F.: Scaling laws for the cosmological constant (2005). arXiv:gr-qc/0512007

  30. Barr, S.M., Ng, S.P., Scherrer, R.J.: Phys. Rev. D 73, 063530 (2006)

    Article  ADS  Google Scholar 

  31. ’t Hooft, G., Nobbenhuis, S.: Class. Quantum Gravity 23, 3819 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Prokopec, T.: A solution to the cosmological constant problem (2006). arXiv:gr-qc/0603088

  33. Steinhardt, P.J., Turok, N.: Science 312, 1180 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  34. Cadoni, M.: Phys. Lett. B 642, 525 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  35. Moffat, J.W.: Positive and negative energy symmetry and the cosmological constant problem (2006). arXiv:hep-th/0610162

  36. Lee, J.W., Lee, J., Kim, H.C.: J. Cosmol. Astropart. Phys. 0708, 005 (2007)

    Article  ADS  Google Scholar 

  37. Capozziello, S., Garattini, R.: Class. Quantum Gravity 24, 1627 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Bousso, R., Harnik, R., Kribs, G., Perez, G.: Phys. Rev. D 76, 043513 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  39. Comelli, D.: A way to dynamically overcome the cosmological constant problem (2007). arXiv:0704.1802 [gr-qc]

  40. Maor, I., Krauss, L., Starkman, G.: Anthropics and myopics: conditional probabilities and the cosmological constant (2007). arXiv:0709.0502 [hep-th]

  41. Klinkhamer, F., Volovik, G.E.: Phys. Rev. D 77, 085015 (2008)

    Article  ADS  Google Scholar 

  42. Klinkhamer, F., Volovik, G.E.: Phys. Rev. D 79, 063527 (2009)

    Article  ADS  Google Scholar 

  43. Tkach, V.I.: Mod. Phys. Lett. A 24, 1193 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Rosenthal, E.: Extended Palatini action for general relativity and the natural emergence of the cosmological constant (2008). arXiv:0809.2053 [gr-qc]

  45. Shaposhnikov, M., Zenhausern, D.: Phys. Lett. B 671, 162 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  46. Beck, C.: Physica A 388, 3384 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  47. Klinkhamer, F., Volovik, G.: Phys. Rev. D 79, 063527 (2009)

    Article  ADS  Google Scholar 

  48. Wang, W., Yang, S.: Phys. Lett. B 668, 79 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  49. Capozziello, C., Funkhouser, S.: Mod. Phys. Lett. A 24, 1121 (2009)

    Article  ADS  Google Scholar 

  50. Canfora, F., Giacomini, A., Troncoso, R., Willison, S.: Phys. Rev. D 80, 044029 (2009)

    Article  Google Scholar 

  51. Pankovic, V., Krmar, M., Ciganovic, S.: Cosmological constant as the coefficient of quantum tunneling in the Universe Exterior (2009). arXiv:0901.0479 [gr-qc]

  52. Bauer, F., Sola, J., Stefancic, H.: Phys. Lett. B 678, 427 (2009). arXiv:0902.2215 [hep-th]

    Article  ADS  Google Scholar 

  53. Jain, P., Mitra, S.: One loop calculation of cosmological constant in a scale invariant theory (2009). arXiv:0902.2525 [hep-ph]

  54. Bogan, J.: From the cosmological constant: a new cosmic horizon (2009). arXiv:0902.2600 [physics.gen-ph]

  55. Poplawski, N.: Found. Phys. 39, 307 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. Ahn, C., Kim, C., Linder, E.: Cosmological constant behavior in DBI theory (2009). arXiv:0904.3328 [astro-ph.CO]

  57. Thomas, E., Urban, F., Zhitnitsky, A.: J. High Energy Phys. 0908, 043 (2009)

    Article  ADS  Google Scholar 

  58. Viennot, D., Vigoureux, J.: Int. J. Theor. Phys. 48, 2246 (2009)

    Article  MATH  Google Scholar 

  59. Smolin, L.: The quantization of unimodular gravity and the cosmological constant problem (2009). arXiv:0904.4841 [hep-th]

  60. Maia, M., Capistrano, A., Monte, E.: Int. J. Mod. Phys. A 24, 1545 (2009)

    Article  MATH  ADS  Google Scholar 

  61. Urban, F., Zhitnitsky, A.: The cosmological constant from the Veneziano ghost which solves the U(1) problem in QCD (2009). arXiv:0906.2162 [gr-qc]

  62. Husain, V.: Time, vacuum energy, and the cosmological constant (2009). arXiv:0906.5562 [gr-qc]

  63. Kong, D., Liu, K., Shen, M.: A new kind of solutions of the Einstein’s field equations with non-vanishing cosmological constant (2009). arXiv:0907.1714 [math-ph]

  64. Appignani, C., Casadio, R., Shankaranarayanan, S.: The cosmological constant and Horava-Lifshitz gravity (2009). arXiv:0907.3121 [hep-th]

  65. Klinkhamer, F.R., Volovik, G.E.: Possible solution of the cosmological constant problem (2009). arXiv:0907.4887 [hep-th]

  66. Ward, B.: On the running of the cosmological constant in quantum general relativity (2009). arXiv:0908.1764 [hep-ph]

  67. Toms, D.: Quantum gravity, gauge coupling constants, and the cosmological constant (2009). arXiv:0908.3100 [hep-th]

  68. Aluri, P., Jain, P., Mitra, S., Panda, S., Singh, N.: Constraints on the cosmological constant due to scale invariance (2009). arXiv:0909.1070 [hep-ph]

  69. Arkani-Hamed, N., Dimopoulos, S., Dvali, G., Gabadadze, G.: Nonlocal modification of gravity and the cosmological constant problem (2002). arXiv:hep-th/0209227

  70. Dvali, G., Hofmann, S., Khoury, J.: Phys. Rev. D 76, 084006 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  71. Weinberg, S.: Phys. Rev. Lett. 59, 2607 (1987)

    Article  ADS  Google Scholar 

  72. Weinberg, S.: Theories of the cosmological constant (2006). arXiv:astro-ph/9610044

  73. Carroll, S.M.: Why is the universe accelerating? (2003). arXiv:astro-ph/0310342

  74. Zee, A.: Int. J. Mod. Phys. A 23, 1295 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  75. Van Nieuwenhuizen, P.: Nucl. Phys. B 60, 478 (1973)

    Article  ADS  Google Scholar 

  76. Demir, D.A., Pak, N.K.: Class. Quantum Gravity 26, 105018 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  77. Palatini, A.: Rend. Circ. Mat. Palermo 43, 203 (1919)

    Article  MATH  Google Scholar 

  78. Einstein, A.: Sitz.ber. Preuss. Akad. Wiss., 414 (1925)

  79. Born, M., Infeld, L.: Proc. R. Soc. Lond. A 144, 425 (1934)

    Article  MATH  ADS  Google Scholar 

  80. Bousso, R.: J. High Energy Phys. 0011, 038 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  81. Banks, T.: Cosmological breaking of supersymmetry or little Lambda goes back to the future. II. (2000). arXiv:hep-th/0007146

  82. Witten, E.: Quantum gravity in de Sitter space (2001). arXiv:hep-th/0106109

  83. Klemm, D., Vanzo, L.: J. Cosmol. Astroport. Phys. 0411, 006 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  84. Maldacena, J., Nunez, C.: Int. J. Mod. Phys. A 16, 822 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  85. Ambjorn, J., Jurkiewicz, J., Loll, R.: Phys. Rev. Lett. 93, 131301 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  86. Ambjorn, J., Gorlich, A., Jurkiewicz, J., Loll, R.: Phys. Rev. D 78, 063544 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  87. Linde, A.D.: Phys. Rep. 333, 575 (2000)

    Article  ADS  Google Scholar 

  88. Guth, A.H.: Phys. Rep. 333, 555 (2000)

    Article  ADS  Google Scholar 

  89. Bauer, F., Demir, D.A.: Phys. Lett. B 665, 222 (2008)

    Article  ADS  Google Scholar 

  90. Borunda, M., Janssen, B., Bastero-Gil, M.: J. Cosmol. Astroport. Phys. 0811, 008 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durmuş A. Demir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demir, D.A. Vacuum Energy as the Origin of the Gravitational Constant. Found Phys 39, 1407–1425 (2009). https://doi.org/10.1007/s10701-009-9364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9364-z

Keywords

Navigation