Skip to main content
Log in

Quantum Model of Classical Mechanics: Maximum Entropy Packets

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In a previous paper, a statistical method of constructing quantum models of classical properties has been described. The present paper concludes the description by turning to classical mechanics. The quantum states that maximize entropy for given averages and variances of coordinates and momenta are called ME packets. They generalize the Gaussian wave packets. A non-trivial extension of the partition-function method of probability calculus to quantum mechanics is given. Non-commutativity of quantum variables limits its usefulness. Still, the general form of the state operators of ME packets is obtained with its help. The diagonal representation of the operators is found. A general way of calculating averages that can replace the partition function method is described. Classical mechanics is reinterpreted as a statistical theory. Classical trajectories are replaced by classical ME packets. Quantum states approximate classical ones if the product of the coordinate and momentum variances is much larger than Planck constant. Thus, ME packets with large variances follow their classical counterparts better than Gaussian wave packets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of Classical World in Quantum Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  3. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  4. Hájíček, P., Tolar, J.: Intrinsic properties of quantum systems, arXiv:0806.4437

  5. d’Espagnat, B.: Veiled Reality. Addison-Wesley, Reading (1995)

    Google Scholar 

  6. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1995)

    MATH  Google Scholar 

  7. Poulin, D.: Phys. Rev. A 71, 022102 (2005)

    Article  ADS  Google Scholar 

  8. Kofler, J., Brukner, Č.: Phys. Rev. Lett. 99, 180403 (2007)

    Article  ADS  Google Scholar 

  9. Hepp, K.: Helv. Phys. Acta 45, 237 (1972)

    Google Scholar 

  10. Bell, J.S.: Helv. Phys. Acta 48, 93 (1975)

    MATH  MathSciNet  Google Scholar 

  11. Bóna, P.: Acta Phys. Slov. 23, 149 (1973)

    Google Scholar 

  12. Bóna, P.: Acta Phys. Slov. 25, 3 (1975)

    Google Scholar 

  13. Bóna, P.: Acta Phys. Slov. 27, 101 (1977)

    Google Scholar 

  14. Sewell, G.L.: Quantum Mechanics and its Emergent Macrophysics. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  15. Primas, H.: Asymptotically disjoint quantum states. In: Blanchard, Ph. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. LNP, vol. 538. Springer, Berlin (2002)

    Google Scholar 

  16. Bell, J.S.: Against ’measurement’. In: Miller, A.I. (ed.) Sixty Two Years of Uncertainty. Plenum, New York (1990)

    Google Scholar 

  17. Wallace, D.: The quantum measurement problem: state of play, arXiv:0712.0149v1 [quant-ph]

  18. Gemmer, J., Michel, M., Mahler, G.: Quantum Thermodynamics. Emergence of Thermodynamic Behaviour Within Composite Quantum Systems. LNP, vol. 657. Springer, Berlin (2004)

    Google Scholar 

  19. Linden, N., et al.: Quantum mechanical evolution towards thermal equilibrium, arXiv:0812.2385

  20. Goldstein, S., : Phys. Rev. Lett. 96, 050403 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Isham, C.J.: Lectures on Quantum Theory. Mathematical and Structural Foundations. Imperial College Press, London (1995)

    MATH  Google Scholar 

  22. Jaynes, E.T.: Probability Theory. The Logic of Science. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  23. von Neumann, J.: Mathematical Foundation of Quantum Mechanics. Princeton University Press, Princeton (1983)

    Google Scholar 

  24. Ballentine, L.E.: Quantum Mechanics. A Modern Development. World Scientific, Singapore (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hájíček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hájíček, P. Quantum Model of Classical Mechanics: Maximum Entropy Packets. Found Phys 39, 1072–1096 (2009). https://doi.org/10.1007/s10701-009-9318-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9318-5

Keywords

Navigation