Skip to main content
Log in

Schrödinger’s Equation with Gauge Coupling Derived from a Continuity Equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A quantization procedure without Hamiltonian is reported which starts from a statistical ensemble of particles of mass m and an associated continuity equation. The basic variables of this theory are a probability density ρ, and a scalar field S which defines a probability current j=ρ S/m. A first equation for ρ and S is given by the continuity equation. We further assume that this system may be described by a linear differential equation for a complex-valued state variable χ. Using these assumptions and the simplest possible Ansatz χ(ρ,S), for the relation between χ and ρ,S, Schrödinger’s equation for a particle of mass m in a mechanical potential V(q,t) is deduced. For simplicity the calculations are performed for a single spatial dimension (variable q). Using a second Ansatz χ(ρ,S,q,t), which allows for an explicit q,t-dependence of χ, one obtains a generalized Schrödinger equation with an unusual external influence described by a time-dependent Planck constant. All other modifications of Schrödinger’ equation obtained within this Ansatz may be eliminated by means of a gauge transformation. Thus, this second Ansatz may be considered as a generalized gauging procedure. Finally, making a third Ansatz, which allows for a non-unique external q,t-dependence of χ, one obtains Schrödinger’s equation with electrodynamic potentials A,φ in the familiar gauge coupling form. This derivation shows a deep connection between non-uniqueness, quantum mechanics and the form of the gauge coupling. A possible source of the non-uniqueness is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caticha, A.: Consistency, amplitudes and probabilities in quantum theory. Phys. Rev. A 57(3), 1572–1582 (1998)

    Article  ADS  Google Scholar 

  2. Chicone, C., Kopeikin, S., Mashhoon, B., Retzloff, D.G.: Delay equations and radiation damping. Phys. Lett. A 285, 17–26 (2001)

    ADS  Google Scholar 

  3. Cook, D.B.: Probability and Schrödinger’s Mechanics. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  4. de Castro, A.S., de Souza Dutra, A.: On the quantum Hamilton-Jacobi formalism. Found. Phys. 21(6), 649–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. de la Pena, L., Cetto, A.M.: Quantum theory and linear stochastic electrodynamics. Found. Phys. 31(12), 1703–1731 (2001)

    Article  MathSciNet  Google Scholar 

  6. De Luca, J.: Geometric integration of the electromagnetic two-body problem. J. Math. Phys. 48, 012702 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. Ser. A 133, 60–72 (1931)

    Article  MATH  ADS  Google Scholar 

  8. Elizalde, E.: A note on the quantum Hamilton-Jacobi formalism. Found. Phys. Lett. 6, 283–288 (1993)

    Article  MathSciNet  Google Scholar 

  9. Hall, M.J., Reginatto, M.: Schrödinger equation from an exact uncertainty principle. J. Phys. A 35, 3289–3303 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Home, D., Whitaker, M.A.B.: Ensemble interpretations of quantum mechanics. A modern perspective. Phys. Rep. 210(4), 223–317 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kaempfer, F.A.: Concepts in Quantum Mechanics. Academic Press, New York (1965)

    Google Scholar 

  12. Landau, L.D., Lifshitz, E.M.: Classical Theory of Fields, 5 edn. Course of Theoretical Physics, vol. II. Pergamon, Oxford (1967). Translation from Russian, Nauka, Moscow (1973)

    Google Scholar 

  13. London, F.: Quantenmechanische Deutung der Theorie von Weyl. Z. Phys. 42, 375 (1927)

    Article  ADS  Google Scholar 

  14. Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics. Benjamin, Reading (1963)

    MATH  Google Scholar 

  15. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985), p. 65

    MATH  Google Scholar 

  16. Ogievetski, V.I., Polubarinov, I.V.: On the meaning of gauge invariance. Nuovo Cimento 23, 173–180 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  17. Raju, C.K.: The electrodynamic 2-body problem and the origin of quantum mechanics. Found. Phys. 34, 937–962 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Reginatto, M.: Derivation of equations of nonrelativistic quantum mechanics using the principle of minimum fisher information. Phys. Rev. A 58, 1775–1778 (1998)

    Article  ADS  Google Scholar 

  19. Rohrlich, F.: Classical Charged Particles. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  20. Schiller, R.: Quasi-classical theory of the nonspinning electron. Phys. Rev. 125(3), 1100–1108 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Schrödinger, E.: Quantisierung als Eigenwertproblem, Erste Mitteilung. Ann. Phys. 79, 361 (1926)

    Article  Google Scholar 

  22. Smith, M.L., Oeztas, A.M., Paul, J.: A model of light from ancient blue emissions. Int. J. Theor. Phys. 45, 937–952 (2006)

    Article  MATH  Google Scholar 

  23. Spohn, H.: The critical manifold of the Lorentz-Dirac equation. Europhys. Lett. 50, 287–292 (2000)

    Article  ADS  Google Scholar 

  24. Utiyama, R.: Invariant theoretical interpretation of interactions. Phys. Rev. 101, 1597–1607 (1956)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Weyl, H.: Elektron und Gravitation I. Z. Phys. 56, 330–352 (1929)

    Article  ADS  Google Scholar 

  26. Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191–195 (1954)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, U. Schrödinger’s Equation with Gauge Coupling Derived from a Continuity Equation. Found Phys 39, 964–995 (2009). https://doi.org/10.1007/s10701-009-9311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9311-z

Keywords

Navigation