Skip to main content
Log in

An Introduction to Many Worlds in Quantum Computation

  • Review Article
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The interpretation of quantum mechanics is an area of increasing interest to many working physicists. In particular, interest has come from those involved in quantum computing and information theory, as there has always been a strong foundational element in this field. This paper introduces one interpretation of quantum mechanics, a modern ‘many-worlds’ theory, from the perspective of quantum computation. Reasons for seeking to interpret quantum mechanics are discussed, then the specific ‘neo-Everettian’ theory is introduced and its claim as the best available interpretation defended. The main objections to the interpretation, including the so-called “problem of probability” are shown to fail. The local nature of the interpretation is demonstrated, and the implications of this both for the interpretation and for quantum mechanics more generally are discussed. Finally, the consequences of the theory for quantum computation are investigated, and common objections to using many worlds to describe quantum computing are answered. We find that using this particular many-worlds theory as a physical foundation for quantum computation gives several distinct advantages over other interpretations, and over not interpreting quantum theory at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.phobe.com/s_cat/s_cat.html. Accessed 15 November 2007

  2. Adams, D.: The Hitchiker’s Guide to the Galaxy. Harmony Books, New York (1979)

    Google Scholar 

  3. Aharonov, Y., Davidovich, L., Zagury, N.: Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  4. Aspect, A., Dalibard, J., Roger, G.: Phys. Rev. Lett. 47, 460 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bacciagaluppi, G.: In: Butterfield, J., Placek, T. (eds.) Non-Locality and Modality. Nato Science Series: II, vol. 64. Kluwer Academic, Cambridge (2002). Pitt-Phil-Sci 00000504

    Google Scholar 

  6. Barnum, H., : Proc. R. Soc. Lond. A 456, 1175–1182 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bell, J.: Rev. Mod. Phys. 38 (1966)

  8. Bell, J.: In: Proceedings of the International School of Physics ‘Enrico Fermi’ Course II. Academic Press, New York (1971)

    Google Scholar 

  9. Bohm, D.: Phys. Rev. 85, 180–193 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bohm, D., Hiley, B.: The Undivided Universe. Routledge, London (1993)

    Google Scholar 

  11. Bohr, N.: Phys. Rev. 49, 696–702 (1935)

    Article  ADS  Google Scholar 

  12. Browne, D., Briegel, H.: In: Bruss, D. (ed.) Lectures on Quantum Information. Wiley, New York (2006)

    Google Scholar 

  13. Butterfield, J.: In: Quantum Physics and Divine Action. Vatican Observatory, Vatican City (2001)

    Google Scholar 

  14. Christian, J.: (2007). arXiv:quant-ph/0703179

  15. Deutsch, D.: Int. J. Theor. Phys. 24(1) (1985)

  16. Deutsch, D.: The Fabric of Reality. The Penguin Press, Baltimore (1997)

    Google Scholar 

  17. Deutsch, D.: Proc. R. Soc. Lond. A 455, 3121–3137 (1999)

    ADS  MathSciNet  Google Scholar 

  18. Deutsch, D., Hayden, P.: Proc. R. Soc. Lond. A 456, 1759–1774 (1999)

    Article  MathSciNet  Google Scholar 

  19. Deutsch, D., Jozsa, R.: Proc. Math. Phys. Sci. 439, 553–558 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dunningham, J., Vedral, V.: Phys. Rev. Lett. 99, 180404 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47 (1935)

  22. Everett, H., III: Rev. Mod. Phys. 29 (1957)

  23. Ghirardi, G., Rimini, A., Weber, T.: Phys. Rev. D 34, 490–491 (1986)

    ADS  MathSciNet  Google Scholar 

  24. Hewitt-Horsman, C., Vedral, V.: New J. Phys. 9(5), 135 (2007)

    Article  ADS  Google Scholar 

  25. Hewitt-Horsman, C., Vedral, V.: Phys. Rev. A 76, 062319 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Jarrett, J.: Noûs 18, 569–589 (1984)

    Article  MathSciNet  Google Scholar 

  27. Joos, E., Zeh, H.D.: Z. Phys. B 59 (1985)

  28. Jozsa, R.: Lecture to the Oxford Philosophy of Physics Group, January 2001

  29. Kendon, U.: Math. Struct. Comput. Sci. 17, 1169–1220 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lewis, P.: Pitt-Phil-Sci 2716 (2005)

  31. Meter, R.V., Nemoto, K., Munro, W.: IEEE Trans. Comput. 56(12), 1643–1653 (2007)

    Article  MathSciNet  Google Scholar 

  32. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  34. Page, D.: Phys. Lett. A 91, 57–60 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  35. Price, H.: Pitt-Phil-Sci 2719 (2006)

  36. Redhead, M.: Incompleteness, Nonlocality and Realism. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  37. Rubin, M.A.: Found. Phys. Lett. 14(4), 301–322 (2001)

    Article  MathSciNet  Google Scholar 

  38. Rubin, M.A.: Found. Phys. 32(10), 1495–1523 (2002)

    Article  MathSciNet  Google Scholar 

  39. Santos, E.: October 2004. quant-ph/0410193

  40. Saunders, S.: Synthese 102(2) (1995)

  41. Saunders, S.: In: Clifton, R. (ed.) Perspectives on Quantum Reality. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  42. Shimony, A.: In: Penrose, R., Isham, C. (eds.) Quantum Concepts in Space and Time, pp. 182–203. Oxford University Press, London (1986)

    Google Scholar 

  43. Stapp, H.P.: Am. J. Phys. 53(4), 306–317 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  44. Steane, A.: Stud. Hist. Philos. Mod. Phys. 43(3) (2003)

  45. Tarski, A.: Philos. Phenomenol. Res. 4, 13–47 (1944)

    Article  MathSciNet  Google Scholar 

  46. Timpson, C.: In: Rickles, D. (ed.) The Ashgate Companion to the New Philosophy of Physics. Ashgate, Farnham (2007)

    Google Scholar 

  47. Timpson, C.G., Brown, H.R.: In: Lupacchini, R., Fano, V. (eds.) Understanding Physical Knowledge, pp. 147–166. Preprint no. 24, Departimento di Filosofia, Università di Bologna, CLUEB (2002)

  48. Torretti, R.: The Philosophy of Physics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  49. Vaidman, L.: In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2002)

  50. Wallace, D.: Stud. Hist. Philos. Mod. Phys. 25(4), 637–661 (2002)

    Article  MathSciNet  Google Scholar 

  51. Wallace, D.: Stud. Hist. Philos. Mod. Phys. 34 (2003)

  52. Wallace, D.: Stud. Hist. Philos. Mod. Phys. 34, 87–105 (2003)

    Article  MathSciNet  Google Scholar 

  53. Zanchini, E., Barletta, A.: Nuovo Cim. B 106, 419 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  54. Zurek, W.H.: Phys. Today 44(10) (1991)

  55. Zurek, W.H.: Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare Hewitt-Horsman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hewitt-Horsman, C. An Introduction to Many Worlds in Quantum Computation. Found Phys 39, 869–902 (2009). https://doi.org/10.1007/s10701-009-9300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9300-2

Keywords

Navigation