Skip to main content
Log in

Finite-Time Destruction of Entanglement and Non-Locality by Environmental Influences

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Entanglement and non-locality are non-classical global characteristics of quantum states important to the foundations of quantum mechanics. Recent investigations have shown that environmental noise, even when it is entirely local in influence, can destroy both of these properties in finite time despite giving rise to full quantum state decoherence only in the infinite time limit. These investigations, which have been carried out in a range of theoretical and experimental situations, are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Aty, M.: Synthesis of maximally entangled mixed states and disentanglement in coupled Josephson charge qubits. Eur. Phys. J. D 46, 537–543 (2008)

    Article  ADS  Google Scholar 

  2. Abdel-Aty, M., Moya-Cessa, H.: Sudden death and long-lived entanglement of two trapped ions. Phys. Lett. A 369, 372–376 (2007)

    Article  ADS  Google Scholar 

  3. Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Classification of mixed three-qubit states. Phys. Rev. Lett. 87, 040401 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  4. Almeida, M.P., de Melo, F., Hor-Myell, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  5. Al-Qasimi, A., James, D.F.V.: Sudden death of entanglement at finite temperature. Phys. Rev. A 77, 012117 (2008)

    Article  ADS  Google Scholar 

  6. Anastopoulos, C., Shresta, S., Hu, B.L.: Quantum entanglement under non-Markovian dynamics of two qubits interacting with a common electromagnetic field. arXiv.org/quant-ph0610007v2

  7. Angelo, R., Cardoso, E.S., Furuya, K.: Decoherence induced by a phase-damping reservoir. Phys. Rev. A 73, 062107 (2006)

    Article  ADS  Google Scholar 

  8. Ann, K., Jaeger, G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing under dephasing. Phys. Rev. B 75, 115307 (2007)

    Article  ADS  Google Scholar 

  9. Ann, K., Jaeger, G.: Local-dephasing-induced entanglement sudden death in two-component finite-dimensional systems. Phys. Rev. A 76, 044101 (2007)

    Article  ADS  Google Scholar 

  10. Ann, K., Jaeger, G.: Entanglement sudden death in qubit-qutrit systems. Phys. Lett. A 372, 579–583 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ann, K., Jaeger, G.: Generic tripartite Bell-non-locality sudden death under local phase noise. Phys. Lett. 372, 6853–6858 (2008)

    Article  MathSciNet  Google Scholar 

  12. Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. 100, 080501 (2008)

    Article  ADS  Google Scholar 

  13. Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375–5378 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ban, M.: Entanglement, phase correlation, and dephasing of two-qubit states. Opt. Commun. 281, 3943–3946 (2008)

    Article  ADS  Google Scholar 

  15. Belinskii, A.V., Klyshko, D.N.: Interference of light and Bell’s theorem. Phys. Usp. 36, 653–693 (1993)

    Article  ADS  Google Scholar 

  16. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  17. Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  18. Benatti, F., Floreanini, R.: Open quantum dynamics: complete positivity and entanglement. Int. J. Mod. Phys. B 19, 3063–3139 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Cao, X., Zheng, H.: Non-Markovian disentanglement dynamics of a two-qubit system. Phys. Rev. A 77, 022320 (2008)

    Article  ADS  Google Scholar 

  20. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  21. Carvalho, A.R.R., Busse, M., Brodier, O., Viviescas, C., Buchleitner, A.: Optimal dynamical characterization of entanglement. Phys. Rev. Lett. 98, 190501 (2007)

    Article  ADS  Google Scholar 

  22. Caves, C.M., Milburn, G.J.: Qutrit entanglement. Opt. Commun. 179, 439–446 (2000)

    Article  ADS  Google Scholar 

  23. Cereceda, J.L.: Three-particle entanglement versus three-particle non-locality. Phys. Rev. A 66, 024102 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Cheçkińska, A., Wódkiewicz, K.: Noisy qutrit channels. arXiv.org/quant-ph/0610127v2

  25. Cheçkińska, A., Wódkiewicz, K.: Separability of entangled qutrits in noisy channels. Phys. Rev. A 76, 052306 (2007)

    Article  ADS  Google Scholar 

  26. Chen, K., Albeverio, S., Fei, S.-M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. Chen, K., Albeverio, S., Fei, S.-M.: Entanglement of formation of bipartite quantum states. Phys. Rev. Lett. 95, 210501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Chou, C.-H., Yu, T., Hu, B.L.: Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment. Phys. Rev. E 77, 011112 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  30. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  31. Cormick, C., Paz, J.P.: Decoherence of Bell states by local interactions with a dynamical spin environment. Phys. Rev. A 78, 012357 (2008)

    Article  ADS  Google Scholar 

  32. Cui, H.T., Li, K., Li, X.X.: A study of the sudden death of entanglement. Phys. Lett. A 365, 44–48 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Cunha, M.O.T.: The geometry of entanglement sudden death. New J. Phys. 9, 237–244 (2007)

    Article  MathSciNet  Google Scholar 

  34. Dajka, J., Mierzejewski, M., Łuczka, J.: Entanglement persistence in contact with the environment: exact results. J. Phys. A: Math. Theor. 40, F879–F886 (2007)

    Article  ADS  Google Scholar 

  35. Dajka, J., Mierzejewski, M., Łuczka, J.: Non-Markovian entanglement evolution of two uncoupled qubits. Phys. Rev. A 77, 042316 (2008)

    Article  ADS  Google Scholar 

  36. Diósi, L.: Progressive decoherence and total environmental disentanglement. In: Benatti, F., Floreanini, R. (eds.) Irreversible Quantum Dynamics, pp. 157–163. Springer, Berlin (2003). arXiv.org/quant-ph/0301096v1

    Chapter  Google Scholar 

  37. Dobrovitski, V.V., De Raedt, H.A.: Efficient scheme for numerical simulations of the spin-bath decoherence. Phys. Rev. E 67, 056702 (2003)

    Article  ADS  Google Scholar 

  38. Dodd, P.J.: Disentanglement by dissipative open system dynamics. Phys. Rev. A 69, 052106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  39. Dodd, P.J., Halliwell, J.J.: Disentanglement and decoherence by open system dynamics. Phys. Rev. A 69, 052105 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  40. Drumond, R.C., Cunha, M.O.T.: Geometry of entanglement sudden death for linear dynamics. arXiv:0809.4445v1 [quant-ph]

  41. Duan, L.-M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000)

    Article  ADS  Google Scholar 

  42. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. Fei, S.-M., Li-Jost, X.: R function related to entanglement of formation. Phys. Rev. A 73, 024302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. Gardiner, C.W.: Quantum Noise. Springer, Berlin (1991)

    MATH  Google Scholar 

  45. Gong, Y.-X., Zhang, Y.-S., Dong, Y.-L., Niu, X.-L., Huang, Y.-F., Guo, G.-C.: Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons. Phys. Rev. A 78, 042103 (2008)

    Article  ADS  Google Scholar 

  46. Gour, G.: Mixed-state entanglement of assistance and the generalized concurrence. Phys. Rev. A 72, 042318 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  47. Hamdouni, Y.: Nonzero-temperature dynamics near quantum phase transition in the isotropic Lipkin Meshkov Glick model: an open quantum system approach. J. Phys. A: Math. Theor. 41, 135302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  48. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  49. Horodečki, M., Horodečki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4216 (1999)

    Article  ADS  Google Scholar 

  50. Horodečki, M., Horodečki, P., Horodečki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Horodečki, P.: Separability criterion and inseparable mixed states with PPT. Phys. Lett. A 232, 333–339 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Horodečki, M., Shor, P.W., Ruskai, M.B.: General entanglement breaking channels. Rev. Math. Phys. 15, 629–641 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  53. Hu, X.G.: Laguerre scheme: Another member for propagating the time-dependent Schrödinger equation. Phys. Rev. E 59, 2471–2474 (1999)

    Article  ADS  Google Scholar 

  54. Huang, J.-H., Zhu, S.-Y.: Necessary and sufficient conditions for the entanglement sudden death under amplitude damping and phase damping. Phys. Rev. A 76, 062322 (2007)

    Article  ADS  Google Scholar 

  55. Huang, J.-H., Zhu, S.-Y.: Sudden death time of two-qubit entanglement in a noisy environment. Opt. Commun. 281, 2156–2159 (2008)

    Article  ADS  Google Scholar 

  56. Ikram, M., Li, F.-L., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation environments. Phys. Rev. A 75, 062336 (2007)

    Article  ADS  Google Scholar 

  57. Jaeger, G., Ann, K.: Disentanglement and decoherence in a pair of qutrits under dephasing noise. J. Mod. Phys. 54, 2327–2338 (2007)

    Google Scholar 

  58. Jaeger, G., Ann, K.: Local basis-dependent noise-induced Bell-nonlocality sudden death in tripartite system. Phys. Lett. A 372, 2212–2216 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  59. Jaeger, G., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems. Phys. Rev. A 68, 022318 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  60. Jakóbczyk, L., Jamróz, A.: Noise-induced finite-time disentanglement in two-atomic system. Phys. Lett. A 333, 35–45 (2004)

    Article  MATH  ADS  Google Scholar 

  61. Jamróz, A.: Local aspects of disentanglement induced by spontaneous emission. J. Phys. A: Math. Gen. 39, 7727–7735 (2006)

    Article  MATH  ADS  Google Scholar 

  62. Jing, J., Lü, Z.-G., Yang, G.-H.: Controllable dynamics of two separate qubits in Bell states. Phys. Rev. A 76, 032322 (2007)

    Article  ADS  Google Scholar 

  63. Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Entanglement increase from local interactions and not completely positive maps. Phys. Rev. A 76, 022102 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  64. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2324 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. Kraus, K.: States, Effects, and Operations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  66. Lai, C.-Y., Hung, J.-T., Mou, C.-Y., Chen, P.: Induced decoherence and entanglement by interacting quantum spin baths. Phys. Rev. B 77, 205419 (2008)

    Article  ADS  Google Scholar 

  67. Laurat, J., Choi, K.S., Deng, H., Chou, C.W., Kimble, H.J.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007)

    Article  ADS  Google Scholar 

  68. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)

    Article  ADS  Google Scholar 

  69. Li, J., Chalapat, K., Paraoanu, G.S.: Enhancement of ESD for driven qubits. J. Low Temp. Phys. 153, 294–303 (2008)

    Article  ADS  Google Scholar 

  70. Li, J.-Q., Fu, L.-B., Liang, J.-Q.: Environment-induced disentanglement of the EPR system. J. Phys. B: At. Mol. Opt. Phys. 41, 015504 (2008)

    Article  ADS  Google Scholar 

  71. Liu, K.-L., Goan, H.-S.: Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments. Phys. Rev. A 76, 022312 (2007)

    Article  ADS  Google Scholar 

  72. Ma, X.S., Wang, A.M., Cao, Y.: Entanglement evolution of three-qubit states in a quantum-critical environment. Phys. Rev. B 76, 155327 (2007)

    Article  ADS  Google Scholar 

  73. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  74. Mermin, N.D.: Extreme quantum entanglement in superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. Min, G., Lin-Fan, Z., Liang, Q.: Three-qubit entanglement sudden death. Commun. Theor. Phys. 49, 1443–1448 (2008)

    Article  Google Scholar 

  76. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  77. Paz, J.P., Roncaglia, A.J.: Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)

    Article  ADS  Google Scholar 

  78. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. Qiu, L., Wang, A.M., Su, X.Q., Ma, X.S.: Tripartite states Bell-nonlocality sudden death in an antiferromagnetic environment. Opt. Commun. 281, 5475–5479 (2008)

    Article  ADS  Google Scholar 

  80. Rau, A.R.P., Ali, M., Alber, G.: Hastening, delaying, or averting sudden death of quantum entanglement. Europhys. Lett. 82, 40002 (2008)

    Article  ADS  Google Scholar 

  81. Roszak, K., Machnikowski, P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A 73, 022313 (2006)

    Article  ADS  Google Scholar 

  82. Roszak, K., Machnikowski, P., Jacak, L.: Phonon-induced disentanglement of confined excitons. Phys. Status Solidi B 243(10), 2261–2265 (2006)

    Article  Google Scholar 

  83. Ruskai, M.B.: Qubit entanglement breaking channels. Rev. Math. Phys. 15, 643–662 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  84. Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    Article  ADS  Google Scholar 

  85. Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73, 040305(R) (2006)

    ADS  Google Scholar 

  86. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 555–563 (1935)

    Article  Google Scholar 

  87. Shimony, A.: Degree of entanglement. Ann. NY Acad. Sci. 755, 675–679 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  88. Silman, J., Machnes, S., Shnider, S., Horwitz, L.P., Belenkiy, A.: The EPR experiment in the energy-based stochastic reduction framework. J. Phys. A: Math. Theor. 41, 255303 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  89. Simon, R.: Peres-Horodečki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000)

    Article  ADS  Google Scholar 

  90. Stinespring, W.F.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  91. Sun, Z., Wang, X., Sun, C.P.: Disentanglement in a quantum-critical environment. Phys. Rev. A 75, 062312 (2007)

    Article  ADS  Google Scholar 

  92. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066–3069 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  93. Terhal, B.M., Vollbrecht, K.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625–2628 (2000)

    Article  ADS  Google Scholar 

  94. Tiersch, M., de Melo, F., Buchleitner, A.: Entanglement evolution in finite dimensions. Phys. Rev. Lett. 101, 170502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  95. Tolkunov, D., Privman, V., Aravind, P.K.: Decoherence of a measure of entanglement. Phys. Rev. A 71, 060308(R) (2005)

    Article  ADS  MathSciNet  Google Scholar 

  96. Tóth, G., Acín, A.: Genuine tripartite entangled states with a local hidden-variable model. Phys. Rev. A 74, 030306(R) (2006)

    Article  ADS  Google Scholar 

  97. Tsirelson, B.S.: Quantum generalizations of Bell’s inequalities. Lett. Math. Phys. 4, 93–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  98. Tsirelson, B.S.: Quantum analogues of the Bell inequalities. J. Sov. Math. 36, 557–570 (1987)

    Article  Google Scholar 

  99. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  100. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1996)

    Google Scholar 

  101. Werner, R.F.: Quantum states with EPR correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  102. Werner, R.F., Wolf, M.M.: All multipartite Bell-correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)

    Article  ADS  Google Scholar 

  103. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  104. Yang, Q., Yang, M., Cao, Z.-L.: Cavity-loss-induced Bell-nonlocality sudden death in the Tavis-Cummings model. Phys. Lett. A 372, 6843–6846 (2008)

    Article  ADS  Google Scholar 

  105. Yönaç, M., Yu, T., Eberly, J.H.: Pairwise concurrence dynamics: a four-qubit model. J. Phys. B: At. Mol. Opt. Phys. 40, S45–S59 (2007)

    Article  ADS  Google Scholar 

  106. Yu, T.: Entanglement decay versus energy change: a model. Phys. Lett. A 361, 287–290 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  107. Yu, T., Eberly, J.H.: Phonon decoherence of quantum entanglment: robust and fragile states. Phys. Rev. B 66, 193306 (2002)

    Article  ADS  Google Scholar 

  108. Yu, T., Eberly, J.H.: Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68, 165322 (2003)

    Article  ADS  Google Scholar 

  109. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  110. Yu, T., Eberly, J.H.: ESD: classical noise effects. Opt. Commun. 264, 393–397 (2006)

    Article  ADS  Google Scholar 

  111. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  112. Yu, T., Eberly, J.H.: Negative entanglement measure, and what it implies. J. Mod. Opt. 54, 2289–2296 (2007)

    MATH  Google Scholar 

  113. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)

    MATH  MathSciNet  Google Scholar 

  114. Żukowski, M., Brukner, C.: Bell’s theorem for general n-qubit states. Phys. Rev. Lett. 88, 210401 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg Jaeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ann, K., Jaeger, G. Finite-Time Destruction of Entanglement and Non-Locality by Environmental Influences. Found Phys 39, 790–828 (2009). https://doi.org/10.1007/s10701-009-9295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9295-8

Keywords

Navigation