Skip to main content
Log in

Kinematical Reduction of Spatial Degrees of Freedom and Holographic Relation in Yang’s Quantized Space-Time Algebra

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We try to find a possible origin of the holographic principle in the Lorentz-covariant Yang’s quantized space-time algebra (YSTA). YSTA, which is intrinsically equipped with short- and long-scale parameters, λ and R, gives a finite number of spatial degrees of freedom for any bounded spatial region, providing a basis for divergence-free quantum field theory. Furthermore, it gives a definite kinematical reduction of spatial degrees of freedom, compared with the ordinary lattice space. On account of the latter fact, we find a certain kind of kinematical holographic relation in YSTA, which may be regarded as a primordial form of the holographic principle suggested so far in the framework of the present quantum theory that appears now in the contraction limit of YSTA, λ→0 and R→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tanaka, S.: Contracted representation of Yang’s space-time algebra and Buniy-Hsu-Zee’s discrete space-time. Found. Phys. Lett. 19, 567 (2006). hep-th/0511023

    Article  MATH  MathSciNet  Google Scholar 

  2. Yang, C.N.: On quantized space-time. Phys. Rev. 72, 874 (1947)

    Article  ADS  Google Scholar 

  3. Yang, C.N., Proc. of International Conf. on Elementary Particles, pp. 322–323, Kyoto (1965)

  4. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38 (1947)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Snyder, H.S.: The electromagnetic field in quantized space-time. Phys. Rev. 72, 68 (1947)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Tanaka, S.: Noncommutative field theory on Yang’s space-time algebra, covariant Moyal star product and matrix model. hep-th/0406166 (2004)

  7. Tanaka, S.: From Yukawa to M-theory, In: Proc. of Int. Symp. on Hadron Spectroscopy, Chiral Symmetry and Relativistic Description of Bound Systems 3 (2003). hep-th/0306047

  8. Tanaka, S.: Yang’s quantized space-time algebra and holographic hypothesis. hep-th/0303105 (2003)

  9. ‘t Hooft, G.: Dimensional reduction in quantum gravity. gr-qc/9310026 (1993)

  10. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6337 (1995). hep-th/9409089

    Article  ADS  MathSciNet  Google Scholar 

  11. Susskind, L., Witten, E.: The holographic bound in anti-de Sitter space. hep-th/9805114 (1998)

  12. Bousso, R.: Holography in general space-times. J. High Energy Phys. 9906, 028 (1999). hep-th/9906022

    Article  ADS  MathSciNet  Google Scholar 

  13. Bekenstein, J.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hawking, S.W.: Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. Inonu, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA 39, 510 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bekenstein, J.D.: Holographic bound from second law of thermodynamics. Phys. Lett. B 481, 339 (2000). hep-th/0003058

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Vilenkin, N.Ja., Klimyk, A.U.: Representation of Lie groups and Special Functions II. Kluwer Academic, Norwell (1993)

    Google Scholar 

  18. Banks, T., Fischler, W., Shenker, S.H., Susskind, L.: M theory as a matrix model: A conjecture. Phys. Rev. D 55, 5112 (1997). hep-th/9610043

    Article  ADS  MathSciNet  Google Scholar 

  19. Takeuchi, M.: Modern Spherical Functions. Transl. Math. Monogr., vol. 135. Am. Math. Soc., Providence (1993)

    Google Scholar 

  20. Tanaka, S.: Space-time quantization and matrix model. Nuovo Cim. B 114, 49 (1999). hep-th/9808064

    ADS  Google Scholar 

  21. Tanaka, S.: Space-time quantization and nonlocal field theory—relativistic second quantization of matrix model. hep-th/0002001 (2000)

  22. Maldacena, J., Susskind, L.: D-branes and fat black hole. Nucl. Phys. B 475, 679 (1996). hep-th/9604042

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). hep-th/9601029

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Tanaka.

Additional information

S. Tanaka is an Em. Professor of Kyoto University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, S. Kinematical Reduction of Spatial Degrees of Freedom and Holographic Relation in Yang’s Quantized Space-Time Algebra. Found Phys 39, 510–518 (2009). https://doi.org/10.1007/s10701-008-9270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9270-9

Keywords

Navigation