Skip to main content
Log in

Unwrapping Closed Timelike Curves

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to extend a local CTC-free patch of such a spacetime in a way that does not give rise to CTCs. One such procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This “unwrapping” singularity is similar to the string singularities. We define an unwrapping of a (locally) axisymmetric spacetime as the universal cover of the spacetime after one or more of the local axes of symmetry is removed. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Gödel spacetime. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Gödel spacetime still contains CTCs through every point. A “multiple unwrapping” procedure is devised to remove the remaining circular CTCs. We conclude that, based on the given examples, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications. Alternative extensions of spacetimes with CTCs tend to lead to other pathologies, such as naked quasi-regular singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  2. Cooperstock, F.I., Tieu, S.: Closed timelike curves and time travel: dispelling the myth. Found. Phys. 35, 1497–1509 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Gödel, K.: An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447–450 (1949)

    Article  MATH  ADS  Google Scholar 

  4. Gott, J.R.I.: Closed timelike curves produced by pairs of moving cosmic strings—exact solutions. Phys. Rev. Lett. 66, 1126–1129 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Ellis, G.F.R., Schmidt, B.G.: Singular space-times. Gen. Relativ. Gravit. 8, 915–953 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. van Stockum, W.J.: The gravitational field of a distribution of particles rotating around an axis of symmetry. Proc. R. Soc. Edinb. A 57, 135–154 (1937)

    MATH  Google Scholar 

  7. Tipler, F.J.: Rotating cylinders and the possibility of global causality violation. Phys. Rev. D 9, 2203–2206 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  8. Stephani, H., et al.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Chandrasekhar, S., Wright, J.P.: The geodesics in Godel’s universe. Proc. Natl. Acad. Sci. USA 47, 341–347 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  MATH  ADS  Google Scholar 

  11. Marder, L.: Flat space-times with gravitational fields. Proc. R. Soc. Lond. A 252, 45–50 (1959)

    MATH  ADS  MathSciNet  Google Scholar 

  12. Deser, S., Jackiw, R., ’t Hooft, G.: Three-dimensional Einstein gravity: dynamics of flat space. Ann. Phys. 152, 220–235 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Herrera, L., Santos, N.O.: Geodesics in Lewis space-time. J. Math. Phys. 39, 3817–3827 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Culetu, H.: On a stationary spinning string spacetime. J. Phys. Conf. Ser. 68, 012036–012040 (2007)

    Article  ADS  Google Scholar 

  15. Jensen, B., Soleng, H.H.: General-relativistic model of a spinning cosmic string. Phys. Rev. D 45, 3528–3533 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ori, A.: Rapidly moving cosmic strings and chronology protection. Phys. Rev. D 44, 2214–2215 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  17. Deser, S., Jackiw, R., ’t Hooft, G.: Physical cosmic strings do not generate closed timelike curves. Phys. Rev. Lett. 68, 267–269 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Morris, M.S., Thorne, K.S., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446–1449 (1988)

    Article  ADS  Google Scholar 

  19. Frolov, V.P., Novikov, I.D.: Physical effects in wormholes and time machines. Phys. Rev. D 42, 1057–1065 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ori, A.: Formation of closed timelike curves in a composite vacuum/dust asymptotically flat spacetime. Phys. Rev. D 76, 044002 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Tipler, F.J.: Causality violation in asymptotically flat space-times. Phys. Rev. Lett. 37, 879–882 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hawking, S.W.: Chronology protection conjecture. Phys. Rev. D 46, 603–611 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gott, J.R., Alpert, M.: General relativity in a (2+1)-dimensional space-time. Gen. Relativ. Gravit. 16, 243–247 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  24. Schleich, K., Witt, D.M.: Generalized sums over histories for quantum gravity. 1. Smooth conifolds. Nucl. Phys. B 402, 411–491 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Mars, M., Senovilla, J.M.M.: Axial symmetry and conformal Killing vectors. Class. Quantum Gravity 10, 1633 (1993). arXiv:gr-qc/0201045

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Garcia-Parrado, A., Senovilla, J.M.M.: Causal structures and causal boundaries. Class. Quantum Gravity 22, R1 (2005). arXiv:gr-qc/0501069

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Geroch, R.P.: Local characterization of singularities in general relativity. J. Math. Phys. 9, 450 (1968)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Penrose, R.: Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10, 66 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  29. Geroch, R.P., Kronheimer, E.H., Penrose, R.: Ideal points in space-time. Proc. R. Soc. Lond. A 327, 545 (1972)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Scott, S.M., Szekeres, P.: The abstract boundary: a new approach to singularities of manifolds. J. Geom. Phys. 13, 223 (1994). arXiv:gr-qc/9405063

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Vickers, J.A.G.: Generalized cosmic strings. Class. Quantum Gravity 4, 1 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Schmidt, B.G.: A new definition of singular points in general relativity. Gen. Relativ. Gravit. 1, 269–280 (1971)

    Article  MATH  ADS  Google Scholar 

  33. Johnson, R.A.: The bundle boundary in some special cases. J. Math. Phys. 18, 898–902 (1977)

    Article  MATH  ADS  Google Scholar 

  34. Misner, C.W.: Taub-nut space as a counterexample to almost anything In: Ehlers, J. (ed.) Relativity Theory and Astrophysics, vol. 1. Relativity and Cosmology Lectures in Applied Mathematics, vol. 8, American Mathematical Society, Providence (1967)

    Google Scholar 

  35. Krasnikov, S.: Unconventional stringlike singularities in flat spacetime. Phys. Rev. D 76, 024010 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. Carter, B.: The commutation property of a stationary, axisymmetric system. Commun. Math. Phys. 17, 233 (1970)

    Article  MATH  ADS  Google Scholar 

  37. Banados, M., Teitelboim, C., Zanelli, J.: The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849 (1992). arXiv:hep-th/9204099

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Cutler, C.: Global structure of Gott’s two-string spacetime. Phys. Rev. D 45, 487–494 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  39. Carroll, S.M., et al.: Energy-momentum restrictions on the creation of Gott time machines. Phys. Rev. D 50, 6190–6206 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  40. Boyda, E.K., et al.: Holographic protection of chronology in universes of the Gödel type. Phys. Rev. D 67, 106003 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  41. Brecher, D., et al.: Closed timelike curves and holography in compact plane waves. J. High Energy Phys. 10, 31–49 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  42. Astefanesei, D., Mann, R.B., Radu, E.: Nut charged space-times and closed timelike curves on the boundary. J. High Energy Phys. 1, 49 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  43. Bonnor, W.B., Santos, N.O., MacCullum, M.A.H.: An exterior for the Gödel spacetime. Class. Quantum Gravity 15, 357–366 (1998)

    Article  MATH  ADS  Google Scholar 

  44. Geroch, R.: A Method for generating solutions of Einstein’s equations. J. Math. Phys. 12, 918–924 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Slobodov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slobodov, S. Unwrapping Closed Timelike Curves. Found Phys 38, 1082–1109 (2008). https://doi.org/10.1007/s10701-008-9253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9253-x

Keywords

Navigation