Skip to main content
Log in

A Unified Framework for Relativity and Curvilinear-Time Newtonian Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Classical mechanics is presented so as to render the new formulation valid for an arbitrary temporal variable, as opposed to Newton’s Absolute Time only. Newton’s theory then becomes formally identical (in a precise sense) to relativity, albeit in a three-dimensional manifold. (The ultimate difference between the two dynamics is traced to the existence of the relativistic ‘mass-shell’ condition.) A classical Lagrangian is provided for our formulation of the equations of motion and it is related to one of the known forms of the corresponding relativistic Lagrangian, which is the analogue of the Polyakov Lagrangian of string theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thirring, W.: Classical Dynamical Systems. Springer, New York (1978)

    MATH  Google Scholar 

  2. Cartan, E.: Sur les variétés à connexion affine et la theorie de la relativité généralisée (première partie). Ann. Sci. Ec. Norm. Super. 40, 325–412 (1923)

    MathSciNet  Google Scholar 

  3. Cartan, E.: Sur les variétés à connexion affine et la theorie de la relativité généralisée (suite). Ann. Sci. Ec. Norm. Super. 41, 1–25 (1924)

    MathSciNet  Google Scholar 

  4. Trautman, A.: Foundations and current problems of general relativity theory. In: Lectures on General Relativity, Brandeis 1964 Summer Institute on Theoretical Physics, vol. 1. Prentice-Hall, Englewood Cliffs (1964)

    Google Scholar 

  5. Misner, C., Thorne, K., Wheeler, J.: Gravitation. Freeman, New York (1973)

    Google Scholar 

  6. Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1949)

    MATH  Google Scholar 

  7. Johns, O.D.: Analytical Mechanics for Relativity and Quantum Mechanics. Oxford University Press, London (2005)

    MATH  Google Scholar 

  8. Duval, C., Gibbons, G., Horváthy, P.: Celestial mechanics, conformal structures and gravitational waves. Phys. Rev. D. 43, 3907–3921 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Barbour, J.: The timelessness of quantum gravity: I. The evidence from the classical theory. Class. Quantum Gravity 11, 2853–2873 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Barbour, J.: The timelessness of quantum gravity: II. The appearance of dynamics in static configurations. Class. Quantum Gravity 11, 2875–2897 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  11. Barbour, J., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382, 295–306 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. Barbour, J., Foster, B., Ó Murchadha, N.: Relativity without relativity. Class. Quantum Gravity 19, 3217–3248 (2002)

    Article  MATH  ADS  Google Scholar 

  13. Hurley, D., Vandyck, M.: Relativity and curvilinear-time Newtonian mechanics: a unified and geometrical framework (2006, submitted)

  14. Hurley, D., Vandyck, M.: A unified and geometrical principle of relativity for curvilinear-time Newtonian mechanics and special relativity (2006, submitted)

  15. Synge, J.L., Schild, A.: Tensor Calculus. University of Toronto Press, Toronto (1949)

    MATH  Google Scholar 

  16. Whittaker, E.T.: Analytical Dynamics. Cambridge University Press, Cambridge (1904)

    MATH  Google Scholar 

  17. Synge, J.L., Griffith, B.A.: Principles of Mechanics. McGraw-Hill, New York (1959)

    Google Scholar 

  18. Synge, J.L.: Relativity, the General Theory. North-Holland, Amsterdam (1960)

    MATH  Google Scholar 

  19. Hawking, S., Ellis, G.: The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  20. Doughty, N.A.: Lagrangian Interaction. Addison-Wesley, Reading (1990)

    MATH  Google Scholar 

  21. Kaku, M.: Introduction to Superstrings and M-Theory. Springer, New York (1999), Chap. 1.4

    MATH  Google Scholar 

  22. Polchinski, J.: Strings Theory, vol. 1. Cambridge University Press, Cambridge (1998), Chap. 3.6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Hurley.

Additional information

Dedicated to Emeritus Professor D. Speiser (Université Catholique de Louvain, Belgium) who provided the inspiration for this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurley, D.J., Vandyck, M.A. A Unified Framework for Relativity and Curvilinear-Time Newtonian Mechanics. Found Phys 38, 395–408 (2008). https://doi.org/10.1007/s10701-008-9208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9208-2

Keywords

Navigation