Skip to main content
Log in

An “Anti-Gleason” Phenomenon and Simultaneous Measurements in Classical Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We report on an “anti-Gleason” phenomenon in classical mechanics: in contrast with the quantum case, the algebra of classical observables can carry a non-linear quasi-state, a monotone functional which is linear on all subspaces generated by Poisson-commuting functions. We present an example of such a quasi-state in the case when the phase space is the 2-sphere. This example lies in the intersection of two seemingly remote mathematical theories—symplectic topology and the theory of topological quasi-states. We use this quasi-state to estimate the error of the simultaneous measurement of non-commuting Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarnes, J.F.: Quasi-states and quasi-measures. Adv. Math. 86(1), 41–67 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aarnes, J.F., Rustad, A.B.: Probability and quasi-measures—a new interpretation. Math. Scand. 85, 278–284 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970)

    Article  MATH  ADS  Google Scholar 

  4. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  MATH  ADS  Google Scholar 

  5. Beltrametti, E.G., Bugajski, S.: The Bell phenomenon in classical frameworks. J. Phys. A 29, 247–261 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  7. Berndt, R.: An Introduction to Symplectic Geometry. Graduate Studies in Mathematics, vol. 26. American Mathematical Society, Providence (2000)

    Google Scholar 

  8. Busch, P.: Private communication

  9. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb graphs of 2-manifolds. Discret. Comput. Geom. 32, 231–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Entov, M., Polterovich, L.: Calabi quasimorphism and quantum homology. Int. Math. Res. Not. 30, 1635–1676 (2003)

    Article  MathSciNet  Google Scholar 

  11. Entov, M., Polterovich, L.: Quasi-states and symplectic intersections. Commun. Math. Helv. 81(1), 75–99 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Entov, M., Polterovich, L., Zapolsky, F.: Quasi-morphisms and the Poisson bracket. Preprint arXiv math.SG/0605406, to appear in Pure Appl. Math. Quat., a special issue in honor of G. Margulis

  13. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)

    MATH  MathSciNet  Google Scholar 

  14. Holland, P.R.: The Quantum Theory of Motion. An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  15. Horwitz, L.: Private communication

  16. Jauch, J.M.: Foundations of Quantum Mechanics. Addison–Wesley, Reading (1968)

    MATH  Google Scholar 

  17. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  18. Madore, J.: The fuzzy sphere. Class. Quantum Gravity 9, 69–87 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. McDuff, D., Salamon, D.: J-Holomorphic Curves and Symplectic Topology. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  20. Perelomov, A.: Generalized Coherent States and Their Applications. Texts and Monographs in Physics. Springer, Berlin (1986)

    MATH  Google Scholar 

  21. Peres, A.: Quantum Theory: Concepts and Methods. Fundamental Theories of Physics, vol. 57. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  22. Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement integrable ou d’une fonction numerique. C. R. Acad. Sci. Paris 222, 847–849 (1946)

    MATH  MathSciNet  Google Scholar 

  23. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955). Translation of Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  24. Zapolsky, F.: Quasi-states and the Poisson bracket on surfaces. J. Mod. Dyn. 1(3), 465–475 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Entov.

Additional information

M. Entov partially supported by E. and J. Bishop Research Fund and by the Israel Science Foundation grant # 881/06.

L. Polterovich partially supported by the Israel Science Foundation grant # 11/03.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entov, M., Polterovich, L. & Zapolsky, F. An “Anti-Gleason” Phenomenon and Simultaneous Measurements in Classical Mechanics. Found Phys 37, 1306–1316 (2007). https://doi.org/10.1007/s10701-007-9158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9158-0

Keywords

Navigation