Skip to main content
Log in

Welcher Weg? A Trajectory Representation of a Quantum Young’s Diffraction Experiment

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The double slit problem is idealized by simplifying each slit by a point source. A composite reduced action for the two correlated point sources is developed. Contours of the reduced action, trajectories and loci of transit times are developed in the region near the two point sources. The trajectory through any point in Euclidean 3-space also passes simultaneously through both point sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Floyd, E.R.: Phys. Rev. D 34, 3246 (1986)

    Article  ADS  Google Scholar 

  2. Floyd, E.R.: Gravitation and cosmology: from the Hubble radius to the Planck scale. In: Amoroso, R.L., Hunter, G., Kafatos, M., Vigier, J.-P. (eds.) Proceedings of a Symposium in Honour of the 80th Birthday of Jean-Pierre Vigier. Kluwer Academic, Dordrecht (2002), extended version promulgated as quant-ph/00009070

    Google Scholar 

  3. Floyd, E.R.: Interference, reduced action and trajectories. Found. Phys. 37 (2007, in press)

  4. Faraggi, A.E., Matone, M.: Int. J. Mod. Phys. A 15, 1869 (2000), hep-th/98090127

    MATH  ADS  MathSciNet  Google Scholar 

  5. Bertoldi, G., Faraggi, A.E., Matone, M.: Class. Quantum Gravity 17, 3965 (2000), hep-th/9909201

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Carroll, R.: Can. J. Phys. 77, 319 (1999), quant-ph/9904081

    Article  ADS  Google Scholar 

  7. Carroll, R.: Quantum Theory, Deformation and Integrability, pp. 50–56. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  8. Carroll, R.: Uncertainty, trajectories, and duality. quant-ph/0309023

  9. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, Part II, p. 1284. McGraw–Hill, New York (1953)

    MATH  Google Scholar 

  10. Philippidis, C., Dewdney, C., Hiley, B.J.: Nuovo Cimento B 52, 15 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  11. Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Surf. Sci. Rep. 53, 199 (2004)

    Article  ADS  Google Scholar 

  12. Bohm, D.: Phys. Rev. 85, 166 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  13. Floyd, E.R.: Phys. Rev. D 26, 1339 (1982)

    Article  ADS  Google Scholar 

  14. Goldstein, H.: Classical Mechanics, 2nd edn., p. 441. Addison–Wesley, Reading (1980)

    MATH  Google Scholar 

  15. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, Part I, p. 661. McGraw–Hill, New York (1953)

    MATH  Google Scholar 

  16. Holland, P.R.: The Quantum Theory of Motion, pp. 85–86, 183, 201. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  17. Zhao, Y., Makri, N.: J. Chem. Phys. 119, 60 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Floyd.

Additional information

Communicated by vd Merwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floyd, E.R. Welcher Weg? A Trajectory Representation of a Quantum Young’s Diffraction Experiment. Found Phys 37, 1403–1420 (2007). https://doi.org/10.1007/s10701-007-9155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9155-3

Keywords

Navigation