Skip to main content
Log in

Remark on a Group-Theoretical Formalism for Quantum Mechanics and the Quantum-to-Classical Transition

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We sketch a group-theoretical framework, based on the Heisenberg–Weyl group, encompassing both quantum and classical statistical descriptions of unconstrained, non-relativistic mechanical systems. We redefine in group-theoretical terms a kinematical arena and a space of statistical states of a system, achieving a unified quantum-classical language and an elegant version of the quantum-to-classical transition. We briefly discuss the structure of observables and dynamics within our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl, Gruppentheorie und Quantenmechanik (S. Hirzel, Lepzig 1928); English translation: Theory of Groups and Quantum Mechanics (Dover, New York 1950).

  2. E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (F. Vieweg und Sohn, Braunschweig, 1931); English translation Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, expanded and improved ed. (Academic Press, New York 1959).

  3. R. F. Werner, quant-ph/9504016.

  4. N. P. Landsman, in Handbook of Philosophy of Science, Vol 2: Philosophy of Physics, J. Butterfield and J. Earman, eds. (North Holland, Amsterdam 2006).

  5. Wigner E. (1932). Phys. Rev. 40: 749

    Article  MATH  ADS  Google Scholar 

  6. Moyal J.E. (1949). Proc. Camb. Phil. Soc. 45: 99

    Article  MATH  MathSciNet  Google Scholar 

  7. Schleich W.P. (2001) Quantum Optics in Phase Space. Wiley-VCH, Berlin

    MATH  Google Scholar 

  8. Folland G. (1995) A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  9. Abramowitz M., Stegun I. eds. (1965) Handbook of Mathematical Functions. Dover, New York

    Google Scholar 

  10. Mielnik B. (1974). Commun. Math. Phys. 37: 221

    Article  ADS  MathSciNet  Google Scholar 

  11. Perelomov A. (1986) Generalized Coherent States and Their Applications. Springer, Berlin

    MATH  Google Scholar 

  12. Haag R. (1996) Local Quantum Physics: Fields, Particles, Algebras, 2nd. rev. and enlarged ed. Springer Verlag, Berlin

    MATH  Google Scholar 

  13. Gu Y. (1985). Phys. Rev. A 32: 1310

    Article  ADS  MathSciNet  Google Scholar 

  14. Wódkiewicz K. (1984). Phys. Rev. Lett. 52: 1064

    Article  ADS  MathSciNet  Google Scholar 

  15. E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); R. J. Glauber, Phys. Rev. 131, 2766 (1963).

    Google Scholar 

  16. Davidović D.M., Lalović D. (1998). J. Phys. A 31: 2281

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. It only satisfies a modified, “twisted” condition: \(\int\int{\rm d}^n \xi {\rm d}^n \eta {\rm d}^n \xi '{\rm d}^n {\eta}'\,\overline{f( \eta, \xi)} e^{-\frac{i}{2\hbar}\omega[(\eta, \xi), ({\eta}', {\xi}')]} \chi_\varrho({\eta}' - \eta, {\xi}' - \xi )f(\eta', {\xi}')\ge 0,\) which has been studied e.g. in T Bröcker and R. F. Werner, J. Math. Phys. 36, 62 (1995).

  18. J. Naudts and M. Kuna, J. Phys. A 34, 9265 (2001); J. Naudts, in Quantum Theory And Symmetries, Proceedings of the 2nd International Symposium, E. Kapuścik and A. Horzela, eds. (World Scientific, Singapore 2002).

  19. T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) K1, 966 (1921). O. Klein, Z. Phys. 37, 895 (1926).

  20. However, our approach can be recasted in a C *-algebraic language: for a locally compact kinematical group G, the convolution algebra L 1(G) can be equipped with a suitable norm turning it (after completion) into a C *-algebra C *(G) (see e.g. J. Dixmier, C * Algebras, (North Holland, Amsterdam 1982, or Ref. 8). Then, each \(\phi\in\,\mathcal {P}_1(G)\) defines (after suitable manipulations) a positive normalized functional on C *(G), so it is a state in the algebraic terminology. In this reformulation, the role of the (usually abstract) C *-algebra of observables is played by the group C *-algebra C *(G).

  21. R. F. Werner, Phys. Rev. A 40, 4277 (1989); M. Lewenstein, D. Bruss, J. I. Cirac, B. Kraus, M. Kuś, J. Samsonowicz, A. Sanpera, and R. Tarrach, J. Mod. Opt. 47, 2841 (2000).

  22. Korbicz J.K., Lewenstein M. (2006) Phys. Rev. A 74: 022318

    Article  ADS  MathSciNet  Google Scholar 

  23. Ripamonti N. (1996). J. Phys. A 29: 5137

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Gnutzmann S., Kuś M. (1998). J. Phys. A 31: 9871

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. J. Madore, Class. Quant. Grav. 9, 69 (1992); C. S. Chu, J. Madore, and H. Steinacker, JHEP 0108, 038 (2001); A. P. Balachandran, B. P. Dolan, J. Lee, X. Martin, and D. O’Connor, J. Geom. Phys. 43, 184 (2002).

  26. Mackey G. (1963) The Mathematical Foundations of Quantum Mechanics. Benjamin, New York

    MATH  Google Scholar 

  27. Beltrametti E.G., Cassinelli G. (1981) The Logic of Quantum Mechanics. Addison-Wesley, Massachusetts

    MATH  Google Scholar 

  28. Grinbaum A. (2005). Found. Phys. Lett. 18: 563

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Korbicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korbicz, J.K., Lewenstein, M. Remark on a Group-Theoretical Formalism for Quantum Mechanics and the Quantum-to-Classical Transition. Found Phys 37, 879–896 (2007). https://doi.org/10.1007/s10701-007-9130-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9130-z

Keywords

Navigation