Skip to main content
Log in

Deriving Spin within a Discrete-Time Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We prove that the classical theory with a discrete time (chronon) is a particular case of a more general theory in which spinning particles are associated with generalized Lagrangians containing time-derivatives of any order (a theory that has been called “Non-Newtonian Mechanics”). As a consequence, we get, for instance, a classical kinematical derivation of Hamiltonian and spin vector for the mentioned chronon theory (e.g., in Caldirola et al.’s formulation). Namely, we show that the extension of classical mechanics obtained by the introduction of an elementary time-interval does actually entail the arising of an intrinsic angular momentum; so that it may constitute a possible alternative to string theory in order to account for the internal degrees of freedom of the microsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bailey and A. Love, Supersymmetric Gauge Field Theory and String Theory, Chap. 6, and references therein (I.O.P. Publishing, Bristol, 1994).

  2. V. A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683 (1989); Phys. Rev. Lett. 63, 224 (1989); 66, 1811 (1991); V. A. Kostelecký and R. Potting, Nucl. Phys. B 359, 545 (1991); Phys. Lett. B 381, 89 (1996); Phys. Rev. D 63, 046007 (2001); V. A. Kostelecký, M. J. Perry, and R. Potting, Phys. Rev. Lett. 84, 4541 (2000); C. P. Burgess, JHEP 0409, 033 (2004); JHEP 0203, 043 (2002); A. R. Frey, JHEP 0304, 012 (2003); J. Cline and L. Valcárcel, e-print ph/0312245; F. Lizzi and R. J. Szabo, Commun. Math. Phys. 197, 667 (1998); F. Lizzi, G. Mangano and G. Miele, JHEP 06, 049 (2002); M. Kalb and D. Ramond, Phys. Rev. D 9, 2273 (1974); E. Cremmer and J. Scherk, Nucl. Phys. 72, 117 (1974); Y. Nambu, Phys. Rep. C 23, 251 (1976).

  3. F. R. Klinkhamer, Nucl. Phys. B 578, 277 (2000); J. Alfaro, H. A. Morales-Técotl and L. F. Urrutia, Phys. Rev. D 66, 124006 (2002); D. Sudarsky, L. Urrutia, and H. Vucetich, Phys. Rev. Lett. 89, 231301 (2002); Phys. Rev. D 68, 024010 (2003); F. R. Klinkhamer and C. Rupp, e-print th/0312032; C. J. Isham, arXiv:gr-qc/9510063; J. Butterfield and C. J. Isham, e-print gr-qc/9901024; C. Rovelli, e-print gr-qc0006061; Quantum Gravity (Cambridge University Press, Cambridge, 2004); G. Amelino-Camelia, Nature 408, 661 (2000); C. P. Burgess, Living Rev. Rel. 7, 5 (2004).

    Google Scholar 

  4. L. J. Garay, Phys. Rev. Lett. 80, 2508 (1998); G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Nature 12, 607 (1997).

  5. G. Amelino-Camelia, arXiv:hep-th/0211022; Phys. Lett. B 392, 283 (1997); Int. J. Mod. Phys. D 11, 35 (2002); Phys. Lett. B 510, 255 (2001); G. Amelino-Camelia and T. Piran, Phys. Rev. D 64, 036005 (2001); G. Amelino-Camelia, L. Doplicher, S. Nam, and Y. Seo, Phys. Rev. D 67, 085008 (2003); N. R. Bruno, G. Amelino-Camelia, and J. Kowalski-Glikman, Phys. Lett. B 522, 133 (2001); S. X. Chen and Z. Y. Yang, Mod. Phys. Lett. A 18, 2913 (2003); Z. Y. Yang and S. X. Chen, J. Phys. A 35, 9731 (2002); J. Lukierski, H. Ruegg and W. J. Zakrzewski, Ann. Phys. 243, 90 (1995); Z. Guralnik, R. Jackiw, S. Y. Pi, and A. P. Polychronakos, Phys. Lett. B 517, 450 (2001); V. Nazaryan and C. E. Carlson, Phys. Rev. D 71, 025019 (2005); C. E. Carlson, C. D. Carone, and R. F. Lebed, Phys. Lett. B 549, 337 (2002); M. Hayakawa, Phys. Lett. B 478, 394 (2000); arXiv:hep-th/9912167; S. M. Carroll, J. A. Harvey, V. A. Kostelecký, C. D. Lane, and T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001); A. Anisimov, T. Banks, M. Dine, and M. Graesser, Phys. Rev. D 65, 085032, (2002); T. Kifune, Astrophys. J. Lett. L 518, 21 (1999); W. Kluzniak, arXiv:astro-ph/9905308; R. J. Protheroe and H. Meyer, Phys. Lett. B 493, 1 (2000); D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli, Phys. Rev. D 71, 025022 (2005); C. K. Zachos, Mod. Phys. Lett. A 19, 1483 (2004).

  6. R. Gambini and J. Pullin, Phys. Rev. D 59, 124021 (1999); Phys. Rev. D 65, 103509 (2002); G.’t Hooft, Class. Quant. Grav. 13, 1023 (1996); J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); C. Rovelli and L. Smolin, Phys. Rev. D 52, 5743 (1995); Nucl. Phys. B 442, 593 (1995); Erratum, ibid., B 456, 753 (1995).

  7. P. Caldirola, Nuovo Cimento 10, 1747 (1953); Riv. Nuovo Cimento 2(13) (1979), and refs. therein; Revista Brasil. de Física, special volume (1984, July), p. 228. See also R. Cirelli, Nuovo Cimento 1, 260 (1955); L. Lanz, Nuovo Cimento 23, 195 (1962); F. Casagrande and E. Montaldi, Nuovo Cimento A 40, 369 (1977); A 44, 453 (1978); P. Caldirola and E. Montaldi, Nuovo Cimento B 53, 291 (1979); P. Caldirola, G. Casati, and A. Prosperetti, Nuovo Cimento A 43, 127 (1978); P. Caldirola, Nuovo Cimento A 49, 497 (1979); A. Prosperetti, Nuovo Cimento B 57, 253 (1980); L. Belloni, Lett. Nuovo Cimento 31, 131 (1981); V. Benza and P. Caldirola, Nuovo Cimento A 62, 175 (1981); G. C. Ghirardi and T. Weber, Lett. Nuovo Cimento 39, 157 (1984); and in particular R. Bonifacio and P. Caldirola, Lett. Nuovo Cimento 38, 615 (1983); 33, 197 (1982). Cf. also T. D. Lee, “Can time be a discrete dynamical variable?,” Phys. Lett. B 122, 217 (1983); G. Jaroszkiewicz, “Principles of discrete time mechanics,” J. Phys. A: Math. Gen. 30, 3115 (1997); ibid., 3145; 31, 977 (1998); ibid., 1001.

  8. Yaghjian A.D. (1992) Relativistic Dynamics of a Charged Sphere. Springer, New York

    Google Scholar 

  9. P. A. M. Dirac, “The classical theory of electron,” Proc. R. Soc. A 167, 148 (1938); Ann. Inst. Poincaré 9, 13 (1938). Cf. also M. Schönberg et al., Phys. Rev. 69, 211 (1945); and Anais Ac. Brasil. Cie. 19(3), 46–98 (1947).

  10. E. Recami, “A simple quantum equation for dissipation and decoherence” [report NSF-ITF-02-62 (I.T.P., UCSB, California, 2002)], in Quantum Computing and Quantum Bits in Mesoscopic Systems, A. J. Leggett, B. Ruggiero, and P. Silvestrini, ed. (Kluwer/Plenum, New York, 2004), pp. 111–122.

  11. G. Salesi, Mod. Phys. Lett. A 11, 1815 (1996); Int. J. Mod. Phys. A 12, 5103 (1997); G. Salesi and E. Recami, Phys. Lett. A 190, 137 (1994); A 195, E389 (1994); Found. Phys. 28, 763 (1998); E. Recami, and G. Salesi, Phys. Rev. A 57, 98 (1998); Adv. Appl. Cliff. Alg. 6, 27 (1996); in Gravity, Particles and Space-Time, P. Pronin and G. Sardanashvily, ed. (World Scientific Singapore, 1996), pp. 345–368; M. Pavšič, E. Recami, W. A. Rodrigues, G. D. Maccarrone, F. Raciti, and G. Salesi, Phys. Lett. B 318, 481 (1993); W. A. Rodrigues, J. Vaz, E. Recami, and G. Salesi, Phys. Lett. B 318, 623 (1993); J. Vaz and W. A. Rodrigues, Phys. Lett. B 319, 203 (1993).

  12. R. H. A. Farias and E. Recami, “Introduction of a quantum of time (chronon), and its consequences for quantum mechanics,” Report IC/98/74 (ICTP, Trieste, 1998), appeared in preliminary form as e-print quant-ph/9706059. Cf. also R. H. A. Farias, “Introduction of a ‘quantum’ of time into the formalism of quantum mechanics,” Ph.D Thesis, E. Recami supervisor (UNICAMP, Campinas, S.P., 1994).

  13. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Clarendon, Oxford, 1958), p. 262; J. Maddox, Nature 325, 306 (1987).

  14. E. Schrödinger, Sitzunger. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930); 25, 1 (1931).

  15. G. Salesi, Int. J. Mod. Phys. A 17, 347 (2002) e-print: quant-ph/0112052); A 20, 2027 (2005)

    Google Scholar 

  16. Caldirola P. (1956) Suppl. Nuovo Cimento 3: 297

    MathSciNet  Google Scholar 

  17. Salesi G. (2006). Found. Phys. Lett. 19: 367

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Pavšič, Phys. Lett. B 205, 231 (1988); B 221, 264 (1989); Class. Quant. Grav. L 7, 187 (1990).

  19. M. S. Plyushchay, “Comment on the relativistic particle with curvature and torsion of world trajectory,” arXiv:hep-th/9810101; Phys. Lett. B 262, 71 (1991); Mod. Phys. Lett. A 3, 1299 (1988); A 4, 837 (1989); A 4, 2747 (1989); Int. J. Mod. Phys. A 4, 3851 (1989); Phys. Lett. B 243, 383 (1990); Phys. Lett. B 236, 291 (1990); B 235, 47 (1990); B 253, 50 (1991).

  20. A. M. Polyakov, Nucl. Phys. B 268, 406 (1986); Mod. Phys. Lett. A 3, 325 (1988); Yu. A. Kuznetsov and A. M. Polyakov, Phys. Lett. B 297, 49 (1992).

  21. V. V. Nesterenko, A. Feoli, and G. Scarpetta, J. Math. Phys. 36, 5552 (1995); V. V. Nesterenko, Phys. Lett. B 327, 50 (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erasmo Recami.

Additional information

Communicated by Alwyn van der Merwe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recami, E., Salesi, G. Deriving Spin within a Discrete-Time Theory. Found Phys 37, 277–294 (2007). https://doi.org/10.1007/s10701-006-9101-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9101-9

Keywords

Navigation