Skip to main content
Log in

Rigid Particle and its Spin Revisited

  • Published:
Foundations of Physics Aims and scope Submit manuscript

The arguments by Pandres that the double valued spherical harmonics provide a basis for the irreducible spinor representation of the three dimensional rotation group are further developed and justified. The usual arguments against the inadmissibility of such functions, concerning hermiticity, orthogonality, behaviour under rotations, etc., are all shown to be related to the unsuitable choice of functions representing the states with opposite projections of angular momentum. By a correct choice of functions and definition of inner product those difficulties do not occur. And yet the orbital angular momentum in the ordinary configuration space can have integer eigenvalues only, for the reason which have roots in the nature of quantum mechanics in such space. The situation is different in the velocity space of the rigid particle, whose action contains a term with the extrinsic curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Pisarski, Phys. Rev. D 34, 670 (1986); V. V. Nesterenko, J. Phys. A 22, 1673 (1989); M. S. Plyuschay, Mod. Phys. Lett. A 3, 1299 (1988); Phys. Lett. B 235, 47 (1990).

  2. J. P. Gauntlett, K. Itoh, and P. K. Townsend, Phys. Lett. B 238, 65 (1990); M. Huq, P. I. Obiakor, and S. Singh, Int. J. Mod. Phys. A 5, 4301 (1990); V. V. Nesterenko, Theor. Math. Phys. 86, 168 (1991) [Teor. Mat. Fiz. 86N2, 244 (1991)]; T. Dereli, D. H. Hartley, M. Onder, and R. W. Tucker, Phys. Lett. B 252, 601 (1990); J. Govaerts, Phys. Lett. B 293, 327 (1992) [arXiv:hep-th/9207068]; J. Govaerts, Z. Phys. C 57, 59 (1993) [arXiv:hep-th/9207110]; G. Salesi, Mod. Phys. Lett. A 11, 1815 (1996); M. Pavšič, E. Recami, W. A.. Rodrigues, G. D. Maccarrone, F. Raciti and G. Salesi, Phys. Lett. B 318, 481 (1993).

  3. Kosyakov B.P, Nesterenko V.V, (1996). Phys. Lett. B 384, 70

    Article  ADS  MathSciNet  Google Scholar 

  4. Nesterenko V.V, Feoli A, Scarpetta G, (1996). Class. Quant. Grav. 13: 1201. [arXiv:hep-th/9505064].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Pavšič M., (1988). Phys. Lett. B 205, 231

    Article  ADS  MathSciNet  Google Scholar 

  6. Pavšič M., (1989). Phys. Lett. B 221, 264

    Article  ADS  MathSciNet  Google Scholar 

  7. Pavšič M., (1990). Class. Quant. Grav. 7: L187

    Article  Google Scholar 

  8. Salesi G, Int. J. Mod. Phys. A 17, 347 (2002); Int. J. Mod. Phys. A 20, 2027 (2005); Found. Phys. Lett. 19, 367 (2006).

  9. B. P. Kosyakov, Phys. Part. Nucl. 34, 808 (2003) [Fiz. Elem. Chast. Atom. Yadra 34, 1564 (2003)] [arXiv:hep-th/0208035].

  10. Caldirola P, (1956). Suppl. Nuovo Cim. 3, 297

    MathSciNet  Google Scholar 

  11. Kosyakov B.B, Introduction to the Classical Theory of Particles and Fields (Springer-Verlag, Berlin and Heidelberg, 2006). (private communication).

  12. Papapetrou A, (1951). Proc. R. Soc. A 209, 248

    MATH  ADS  MathSciNet  Google Scholar 

  13. Plyushchay M.S, (1991). Phys. Lett. B 253, 50

    Article  ADS  MathSciNet  Google Scholar 

  14. Isberg J, Lindstrom U, Nordstrom H, Grundberg J, (1990). Mod. Phys. Lett. A 5: 2491

    Article  ADS  Google Scholar 

  15. Schrödinger E., Ann. Physik 79, 361 (1926); 79, 489 (1926).

    Google Scholar 

  16. W. Pauli in Handuch der Physik, H. Geiger and K. Scheel, eds. (Julius Springer, Berlin, 1933), Vol. 24, p. 121.

  17. Pauli W, (1939). Helv. Phys. Acta 12, 147

    MATH  Google Scholar 

  18. Van C Winter, (1968). Ann. Phys. (N.Y.) 47, 232

    Article  MATH  ADS  Google Scholar 

  19. Pandres D, (1965). J. Math. Phys. 6: 1098

    Article  MATH  MathSciNet  Google Scholar 

  20. Pandres D, Jacobson D.A, (1968). J. Math. Phys. 9: 1401

    Article  MATH  Google Scholar 

  21. Sanikov S.S, (1967). Nucl. Phys. 87, 834

    Article  Google Scholar 

  22. Merzbacher E, (1962). Am. J. Phys. 30, 237

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Buchdahl H.A, Am. J. Phys. 30, 829 (1962); M. I. Whippman, Amer. J. Phys. 34, 656 (1966).

  24. Misner C.W, Thorne K.S., Wheeler J.A, (1970). Gravitation. Freeman and Company, San Francisco

    Google Scholar 

  25. G. Hunter, P. Ecimovic, I. M Walker, D. Beamish, S. Donev, M. Kowalski, A. Arslan, and S. Heck, J. Phys. A: Math. Gen. 32 795 (1999); G. Hunter and M. Emami-Razavi, “Properties of Fermion Spherical Harmonics,” [arXiv:quant-ph/0507006].

  26. Hamermesh M., (1962). Group Theory and its Application to Physical Problems. Addison-Wesley, Reading MA

    MATH  Google Scholar 

  27. Dirac P.A.M., (1958). The Principles of Quantum Mechanics. Clarendon Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Pavšič.

Additional information

Communicated by Alwyn van der Merwe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavšič, M. Rigid Particle and its Spin Revisited. Found Phys 37, 40–79 (2007). https://doi.org/10.1007/s10701-006-9094-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9094-4

Keywords

Navigation