Skip to main content
Log in

A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements

  • Published:
Foundations of Physics Aims and scope Submit manuscript

The basic methods of constructing the sets of mutually unbiased bases in the Hilbert space of an arbitrary finite dimension are reviewed and an emerging link between them is outlined. It is shown that these methods employ a wide range of important mathematical concepts like, e.g., Fourier transforms, Galois fields and rings, finite, and related projective geometries, and entanglement, to mention a few. Some applications of the theory to quantum information tasks are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quiprocone website, http://www.imaph.tu-bs.de/qi/problems

  2. Schwinger J., (1960). “Unitary operator bases”. Proc. Nat. Acad. Sci. USA. 46, 560

    ADS  Google Scholar 

  3. Alltop W.O., (1980). “Complex sequences with low periodic correlations”. IEEE Trans. Inf. Theory 26, 350

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Ivanović I.D., (1981). “Geometrical description of quantal state determination”. J. Phys. A 14: 3241

    Article  MathSciNet  ADS  Google Scholar 

  5. Wootters W.K., Fields B.D., (1989). “Optimal state-determination by mutually unbiased measurements”. Ann. Phys. (NY) 191, 363

    Article  MathSciNet  ADS  Google Scholar 

  6. Archer C., (2005) “There is no generalization of known formulas for MUBs”. J. Math. Phys. 46: 022106

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Klappenecker A., Rötteler M., (2004). “Construction of MUBs”. Lect. Notes Comp. Sci. 2948, 137

    Article  MATH  Google Scholar 

  8. Wocjan P., Beth T., (2005). “New construction of MUBs in square dimensions”. Quant. Inf. Comput. 5, 181

    MathSciNet  Google Scholar 

  9. Grassl M., “On SIC-POVMs and MUBs in dimension 6,” Proceedings of the ERATO Conf. on Quant. Inf. Science (EQUIS 2004), 1–5 September 2004, Tokyo, pp. 60–61 (2004).

  10. Wootters W.K., (2006). “Quantum measurements and finite geometries”. Found. Phys. 36, 112

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Combescure M., “The MUBs revisited,” preprint quant-ph/0605090 (2006).

  12. Merolla J.M., Mazurenko Y., Goedgebuer J.P., Rhodes W.T., (1999). “Single-photon interference in sidebands of phase-modulated light for MUBs”. Phys. Rev. Lett. 82: 1656

    Article  ADS  Google Scholar 

  13. Nielsen M.A., Chuang I., (2000), Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, pp. 582

    MATH  Google Scholar 

  14. Cerf N.J., Bourennane M., Karlsson A., Gisin N., (2002). “Security of quantum key distribution using d-level systems”. Phys. Rev. Lett. 88: 127902

    Article  ADS  Google Scholar 

  15. Durt T., Kaszlikowski D., Chen J.L., Kwek L.C., (2004). “Security of quantum key distribution with entangled qudits”. Phys. Rev. A 69: 032313

    Article  Google Scholar 

  16. Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M., (2004). “Symmetric informationally complete quantum measurements”. J. Math. Phys. 45: 2171

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Saniga M., Planat M., Rosu H., (2004). “MUBs and finite projective planes”. J. Opt. B: Quantum Semiclass. Opt. 6: L19

    Article  MathSciNet  ADS  Google Scholar 

  18. Bengtsson I., Ericsson A., (2005). “MUBs and the complementarity polytope”. Open Syst. Inf. 12, 107

    Article  MATH  MathSciNet  Google Scholar 

  19. Boykin P.O., Sitharam M., Tiep P.H., and Wocjan P., “MUBs and orthogonal decompositions of Lie algebras,” preprint quant-ph/0506089 (2005).

  20. Kibler M.R., (2006). “Angular momentum and MUBs”. Int. J. Mod. Phys. B 20: 1792

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Kibler M.R., Planat M., (2006). “A SU(2) recipe for MUBs”. Int. J. Mod. Phys. B 20: 1802

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. Horodecki, P. Horodecki, and R. Horodecki, “Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?,” Phys. Rev. Lett. 80, 5239 (1998); B. Baumgartner, B. C. Hiesmayr, and H. Narnhofer, “The state space for 2 qutrits has a phase space structure in its core,” Phys. Rev. A. 74, 032327 (2006).

    Google Scholar 

  23. Romero J.L., Björk G., Klimov A.B., Sánchez-Soto L.L., (2005). “Structure of the sets of MUBs for N qubits”. Phys. Rev. A 72: 062310

    Article  ADS  Google Scholar 

  24. A. Vourdas, “Quantum systems with finite Hilbert space,” Rep. Prog. Phys. 67, 267 (2004); “The Frobenius formalism in Galois quantum systems,” Acta Appl. Math. 93, 197 (2006).

    Google Scholar 

  25. M. Planat and H. Rosu, “The hyperbolic, the arithmetic and the quantum phase,” J. Opt. B: Quantum Semiclass. Opt. 6, S583 (2004); “Mutually unbiased phase states, phase uncertainties, and Gauss sums,” Eur. Phys. J. D 36, 133 (2005).

    Google Scholar 

  26. Bandyopadhyay S., Boykin P.O., Roychowdhury V., Vatan F., (2002). “A new proof for the existence of MUBs”. Algorithmica 34, 512

    Article  MATH  MathSciNet  Google Scholar 

  27. Lidl R., Pilz G., (1998). Applied Abstract Algebra, 2nd edn. Springer, New York

    MATH  Google Scholar 

  28. T. Durt, “If 1=2+3, then 1=2·3: Bell states, finite groups and MUBs, a unifying approach,” preprint quant-ph/0401046 (2004).

  29. Parthasarathy K.R., “On estimating the state of a finite level quantum system,” preprint quant-ph/0408069 (2004).

  30. Gibbons K.S., Hoffman M.J., Wootters W.K., (2004). “Discrete phase space based on finite fields”. Phys. Rev. A 70: 062101

    Article  MathSciNet  ADS  Google Scholar 

  31. Rigetti C., Mosseri R., Devoret M., (2004). “Geometric approach to digital quantum information”. Quantum Inf. Process. 3, 351

    Article  MATH  MathSciNet  Google Scholar 

  32. Pittenger A.O., Rubin M.H., (2004). “MUBs, generalized spin matrices and separability”. Linear Alg. Appl. 390, 255

    Article  MATH  MathSciNet  Google Scholar 

  33. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P., (1994). “The Z 4-linearity of Kerdock, Preparata, Goethals, and related codes”. IEEE Trans. Inform. Theory 40, 301

    Article  MATH  MathSciNet  Google Scholar 

  34. Wan Z.X., (1997). Quaternary Codes. World Scientific, Singapore

    MATH  Google Scholar 

  35. Zauner G., (1999). Quantendesigns-Grundzüge einer Nichtkommutativen Designtheorie. Universität Wien, Dissertation

  36. Beutelspacher A., Rosenbaum U., (1998). Projective Geometry: from Foundations to Applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  37. Bruck R.H., Ryser H.J., (1949) “The nonexistence of certain finite projective planes”. Can. J. Math. 1, 88

    MATH  MathSciNet  Google Scholar 

  38. Saniga M., Planat M., (2005). “Sets of MUBs as arcs in finite projective planes ?”. Chaos, Solitos Fract. 26: 1267

    Article  MATH  MathSciNet  Google Scholar 

  39. Saniga M., Planat M., (2006). “Hjelmslev geometry of MUBs”. J. Phys. A 39, 435

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Hirschfeld J.W.P., (1998). Projective Geometries over Finite Fields. Oxford University Press, Oxford

    MATH  Google Scholar 

  41. Batten L.M., (1997). Combinatorics of Finite Geometries. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  42. Planat M., Saniga M., Kibler M.R., (2006). “Quantum entanglement and projective ring geometry”. SIGMA 2, 066

    MathSciNet  Google Scholar 

  43. Fivel D.I., (1995). “Remarkable phase oscillations appearing in the lattice dynamics of EPR states”. Phys. Rev. Lett. 74, 835

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Fujii K., “A relation between coherent states and generalized Bell states,” preprint quant-ph/0105077 (2001).

  45. DiVincenzo D.P., Mor T., Shor P.W., Smolin J.A., Terhal B.M., (2003) “Unextendible product bases, uncompletable product bases and bound entanglement”. Commun. Math. Phys. 238, 379

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Horodecki P., (1997). “Separability criterion and inseparable mixed states with positive partial transposition”. Phys. Lett. A 232, 333

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Yu S., Chen Z.B., Pan J.W., Zhang Y.D., (2003). “Classifying N-qubit entanglement via Bell’s inequalities”. Phys. Rev. Lett. 90: 080401

    Article  MathSciNet  ADS  Google Scholar 

  48. Bose S., Vedral V., Knight P.L., (1998). “Multiparticle generalization of entanglement swapping”. Phys. Rev. A 57, 822

    Article  ADS  Google Scholar 

  49. Bernevig B.A., Chen H.D., (2003) “Geometry of the 3-qubit state, entanglement and division algebras”. J. Phys. A 36: 8325

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Kauffman L.H., Lomonaco S.J., (2002). “Quantum entanglement and topological entanglement”. New J. Phys. 4: 73.1

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haret C. Rosu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planat, M., Rosu, H.C. & Perrine, S. A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements. Found Phys 36, 1662–1680 (2006). https://doi.org/10.1007/s10701-006-9079-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9079-3

Keywords

Navigation