Skip to main content
Log in

Aspects of the Mach–Einstein Doctrine and Geophysical Application (A Historical Review)

  • Published:
Foundations of Physics Aims and scope Submit manuscript

The present authors have given a mathematical model of Mach's principle and of the Mach–Einstein doctrine about the complete induction of the inertial masses by the gravitation of the universe. The analytical formulation of the Mach–Einstein doctrine is based on Riemann's generalization of the Lagrangian analytical mechanics (with a generalization of the Galilean transformation) on Mach's definition of the inertial mass and on Einstein's principle of equivalence. All local and cosmological effects—which are postulated as consequences of Mach's principle by C. Neumann, Mach, Friedländer and Einstein—result from the Riemannian dynamics with the Mach–Einstein doctrine. In celestial mechanics it follows, in addition, Einstein's formula for the perihelion motion. In cosmology, the Riemannian mechanics yields two models of an evolutionary universe with the expansion lows R ~ t or R ~ t2. In this paper, secular consequences of the Mach–Einstein doctrine are examined concerning palaeogeophysics and celestial mechanics. The research predicted secular decrease of the Earth's flattening and secular acceleration of the motion of the Moon and of the planets. The numerical values of this secular effect agree very well with the empirical facts. In all cases, the secular variation \(\dot{\alpha}\) of the parameter α is the order of magnitude \(\dot{\alpha}=-H_0 \alpha\), where H0 is the instantaneous value of the Hubble constant: \(H_0 =\left({\dot{R}/R} \right)_0 \approx \left( {0.5-1.0} \right) \times 10^{-10}a^{-1}\). The relation of the secular consequences of the Mach–Einstein doctrine to those of Dirac's hypothesis on the expanding Earth, and to Darwin's theory of tidal friction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treder H.-J. (1972) Die Relativitaet der Traegheit. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  2. Mach E. (1933). Die Mechanik in ihrer Entwicklung, 9th edn. Brockhaus, Leipzig

    Google Scholar 

  3. Friedländer B., Friedländer I. (1896). Absolute oder relative Bewegung? Springer, Berlin

    MATH  Google Scholar 

  4. Einstein A. (1965). Sammlung wissenschaftlicher Abhandlungen, Bd. 1. Akemia Nouk, Moscow

    Google Scholar 

  5. Einstein A. (1969). Grundzuege der Relativitaetstheorie, 5th edn. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  6. P. Brosche and J. Sündermann, ‘Die Gezeiten des Meeres und die Rotation der Erde’, Mitt. Astron. Rechen-Inst. (Heidelberg), Serie A, Nr. 42 (1971).

  7. Jordan P. (1955). Schwerkraft und Weltall, 2nd edn. Vieweg-Verlag, Braunschweig

    MATH  Google Scholar 

  8. Jordan P. (1966). Die Expansion der Erde. Vieweg-Verlag, Braunschweig

    Google Scholar 

  9. Treder H.-J. (1969). Gerlands Beitr. Geophysik 78, 1

    Google Scholar 

  10. Jeans J. (1929). Astronomy and Cosmogony. Cup, Cambridge

    MATH  Google Scholar 

  11. Heckmann O. (1968). Theorien der Kosmologie, 2nd edn. Springer-Verlag, Berlin

    MATH  Google Scholar 

  12. Treder H.-J. (1971). Gravitationstheorie und Aequivalenzprinzip. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  13. Munk W.H., MacDonald G.J.F. (1960). The Rotation of the Earth. Cup, Cambridge

    Google Scholar 

  14. Darwin G.H. (1911). Ebben und Flut, 2nd edn. Brockhaus, Leipzig

    Google Scholar 

  15. Darwin G.H., Hough S.S., in Encyklopädie Math. Wiss., Bd. 6, 1.6. (Brockhaus, Leipzig, 1900).

  16. Jeffreys H. (1959). The Earth, 4th edn. Roy. Society, London

    MATH  Google Scholar 

  17. F. Hoyle, Das grenzenlose All (Dumont, Köln, 1937).

  18. H. Spencer-Jones, in Handbuch der Physik, Bd. 47 (Springer-Verlag, Berlin, 1956).

  19. Poincaré H. (1911). Hypothèses cosmogoniques. Guithiers, Paris

    MATH  Google Scholar 

  20. Gutenberg B. (1951). Internal Constitution of the Earth. Plenum, New York

    Google Scholar 

  21. W. Schröder and H.-J. Treder, The Earth and the Cosmos. The Legacy of Hans Ertel (Science Edition, Bremen, 1999).

  22. Shapiro I. et al. (1971). Phys. Rev. Lett. 26, 27

    Article  ADS  Google Scholar 

  23. Chiu H.Y., Hofmann W. (1964). Gravitation and Relativity. Plenum, Benjamin, New York

    MATH  Google Scholar 

  24. Einstein A. (1916). Die Grundlage der allgemeinen Relativitaetstheorie. J. A. Bahrt, Leipzig

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, W., Treder, H.J. Aspects of the Mach–Einstein Doctrine and Geophysical Application (A Historical Review). Found Phys 36, 883–901 (2006). https://doi.org/10.1007/s10701-006-9050-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9050-3

Keywords

Navigation