Skip to main content
Log in

The Distance Modulus Determined from Carmeli’s Cosmology Fits the Accelerating Universe Data of the High-redshift Type Ia Supernovae Without Dark Matter

  • Published:
Foundations of Physics Aims and scope Submit manuscript

The velocity of the Hubble expansion has been added to General Relativity by Moshe Carmeli and this resulted in new equations of motion for the expanding universe. For the first time the observational magnitude–redshift data derived from the high-z supernova teams has been analysed in the framework of the Carmeli theory and the fit to that theory is achieved without the inclusion of any dark matter. Best fits to the data yield an averaged matter density for the universe at the present epoch Ωm ≈ 0.021, which falls well within the measured values of the baryonic matter density. And the best estimate of ΩΛ+ Ωm ≈ 1.021 at the present epoch. The analysis also clearly distinguishes that the Hubble expansion of the universe is speed-limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behar S., Carmeli M. (2000). “Cosmological relativity: A new theory of cosmology”. Int. J. Theor. Phys. 39(5): 1375–1396

    Article  MATH  MathSciNet  Google Scholar 

  2. Carmeli M. (2002). Cosmological Special Relativity. World Scientific, Singapore

    MATH  Google Scholar 

  3. Carmeli, M., “Accelerating Universe: Theory versus Experiment” [arXiv: astro-ph/0205396 v4 2 Jun 2002] (2002).

  4. Carmeli M. (1998). “Is galaxy dark matter a property of spacetime?”. Int. J. Theor. Phys. 37(10): 2621–2625

    Article  MATH  MathSciNet  Google Scholar 

  5. Hartnett J.G. (2005). “Carmeli’s accelerating universe is spatially flat without dark matter”. Int. J. Theor. Phys. 44(4): 485–492

    Article  MATH  MathSciNet  Google Scholar 

  6. Knop R.A., Aldering G., Amanullah R., Astier P., Blanc G., Burns M.S., Conley A., Deustua S.E., Doi M., Ellis R., Fabbro S., Folatelli G., Fruchter A.S., Garavini G., Garmond S., Garton K., Gibbons R., Goldhaber G., Goobar A., Groom D.E., Hardin D., Hook I., Howell D.A., Kim A.G., Lee B.C., Lidman C., Mendez J., Nobili S., Nugent P.E., Pain R., Panagia N., Pennypacker C.R., Perlmutter S., Quimby R., Raux J., Regnault N., Ruiz-Lapuente P., Sainton G., Schaefer B., Schahmaneche K., Smith E., Spadafora A.L., Stanishev V., Sullivan M., Walton N.A., Wang L., Wood-Vasey W.M., Yasuda N. (2003). “New constraints on Ω M , ΩΛ and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope”. Ap. J. 598, 102–137

    Article  ADS  Google Scholar 

  7. Riess A.G., Strolger L.-G., Tonry J., Casertano S., Ferguson H.C., Mobasher B., Challis P., Filippenko A.V., Jha S., Li W., Chornock R., Kirshner R.P., Leibundgut B., Dickinson M., Livio M., Giavalisco M., Steidel C.C., Benitez T., Tsvetanov Z. (2004). “Type Ia supernovae discoveries at z >1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution”. Ap. J. 607, 665–687

    Article  ADS  Google Scholar 

  8. Tonry L.R., Schmidt B.P., Barris B., Candia P., Challis P., Clocchiatti A., Coil A.L., Filippenko A.V., Garnavich P., Hogan C., Holland S.T., Jha S., Kirshner R.P., Krisciunas K., Leibundgut B., Li W., Matheson T., Phillips M.M., Riess A.G., Schommer R., Smith R.C., Sollerman J., Spyromilio J., Stubbs C.W., Suntzeff N.B. (2003). “Cosmological results from high-z supernovae”. Ap. J. 594, 1–24

    Article  ADS  Google Scholar 

  9. Carmeli M. (1996). “Cosmological General Relativity”. Commun. Theor. Phys. 5, 159

    MathSciNet  Google Scholar 

  10. Riess A.G., Filippenko A.V., Challis P., Clocchiatti A., Diercks A. (1998). “Observational evidence from supernovae for an accelerating universe and a cosmological constant”. Astron. J. 116, 1009–1038

    Article  ADS  Google Scholar 

  11. Garnavich P.M., Kirshner R.P., Challis P., Tonry J., Gilliland R.L., Smith R.C., Clocchiatti A., Diercks A., Filippenko A.V., Hamuy M., Hogan C.J., Leibundgut B., Phillips M.M., Reiss D., Riess A.G., Schmidt B.P., Spyromilio J., Stubbs C., Suntzeff N.B., Wells L. (1997). “Constraints on cosmological models from Hubble Space Telescope observations of high-z Supernovae”. Bull. Am. Astron. Soc. 29(7): 1350

    ADS  Google Scholar 

  12. Perlmutter S. et al. (1997). “Cosmology from type ia supernovae: measurements, calibration techniques and implications”. Bull. Am. Astron. Soc. 29(5): 1351

    ADS  Google Scholar 

  13. Krauss L.M. (1998). “The end of the age problem, and the case for a comological constant revisited”. Ap. J. 501, 461–466

    Article  ADS  Google Scholar 

  14. Ostriker J.P., Steinhardt P.J. (1995). “The observational case for a low-density Universe with a non-zero cosmological constant”. Lett. Nat. 377, 600–602

    Google Scholar 

  15. Fukugita M., Hogan C.J., Peebles P.J.E. (1998). “The cosmic baryon budget”. Ap. J. 503, 518–530

    Article  ADS  Google Scholar 

  16. White S.D., Navarro J.F., Evrard A.E., Frenk C.S. (1993). “The baryon content of galaxy clusters: a challenge to cosmological orthodoxy”. Nature 366, 429–433

    Article  ADS  Google Scholar 

  17. Wright A.E., Disney M.J., Thomson R.C. (1990). “Universal gravity: was Newton right?”. Proc. ASA 8(4): 334–338

    ADS  Google Scholar 

  18. Hartnett J.G. (2005). “The Carmeli metric correctly describes spiral galaxy rotation curves”. Int. J. Theor. Phys. 44(3): 349–362

    Article  MATH  MathSciNet  Google Scholar 

  19. Freedman W.L., Madore B.F., Mould J.R., Hill R., Ferrarese L., Kennicutt R.C. Jr, Saha A., Stetson P.B., Graham J.A., Ford H., Hoessel J.G., Huchra J., Hughes S.M., Illingworth G.D. (1994). “Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids”. Nature 371, 757–762

    Article  ADS  Google Scholar 

  20. Riess A.G., Press W.H., Kirshner R.P. (1995). “Using type Ia super nova light curve shapes to measure the Huibble constant”. Ap. J. 438, L17–L20

    Article  ADS  Google Scholar 

  21. Freedman W.L., Madore B.F., Gibson B.K., Ferrarese L., Kelson D.D., Sakai S., Mould J.R., Kennicutt R.C. Jr, Ford H.C., Graham J.A., Huchra J.P., Hughes S.M.G., Illingworth G.D., Macri L.M., Stetson P.B. (2001). “Final results from the Hubble Space Telescope Key Project to measure the Hubble constant”. Ap. J. 553: 47–72

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Hartnett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartnett, J.G. The Distance Modulus Determined from Carmeli’s Cosmology Fits the Accelerating Universe Data of the High-redshift Type Ia Supernovae Without Dark Matter. Found Phys 36, 839–861 (2006). https://doi.org/10.1007/s10701-006-9047-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9047-y

Keywords

Navigation