Skip to main content
Log in

Categorizing Different Approaches to the Cosmological Constant Problem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We have found that proposals addressing the old cosmological constant problem come in various categories. The aim of this paper is to identify as many different, credible mechanisms as possible and to provide them with a code for future reference. We find that they all can be classified into five different schemes of which we indicate the advantages and drawbacks

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Supernova Search Team Collaboration, A. G. Riess et al. “Observational evidence from Supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998), astro-ph/9805201.

    Google Scholar 

  2. Supernova Search Team Collaboration, P. M. Garnavich et al., “Supernova limits on the cosmic equation of state,” Astrophys. J. 509, 74–79 (1998), astro-ph/9806396.

    Google Scholar 

  3. Filippenko A.V. and Riess A.G. (1998). “Results from the high-z supernova search team”. Phys. Rept. 307:31–44 astro-ph/9807008.

    Article  ADS  Google Scholar 

  4. Supernova Cosmology Project Collaboration, S. Perlmutter et al., “Measurements of omega and lambda from 42 high-redshift supernovae,” Astrophys. J. 517, 565–586 (1999), astro-ph/9812133.

    Google Scholar 

  5. Supernova Cosmology Project Collaboration, S. Perlmutter et al., “Cosmology from Type Ia Supernovae,” Bull. Am. Astron. Soc. 29, 1351 (1997), astro-ph/9812473.

  6. Riess A.G. et al. (2000). “Tests of the accelerating universe with near-infrared observations of a high-redshift type Ia supernova”. Astrophys. J. 536:62 astro-ph/0001384

    Article  ADS  Google Scholar 

  7. Supernova Search Team Collaboration, A. G. Riess et al., “The farthest known Supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration,” Astrophys. J. 560, 49–71 (2001), astro-ph/0104455.

    Google Scholar 

  8. Supernova Search Team Collaboration, J. L. Tonry et al., “Cosmological Results from high-z supernovae,” Astrophys. J. 594, 1–24 (2003), astro-ph/0305008.

    Google Scholar 

  9. The Supernova Cosmology Project Collaboration, R. A. Knop et al., “New Constraints on Ω M , ΩΛ, and w from an independent set of eleven High-Redshift Supernovae observed with HST,” Astrophys. J. 598, 102 (2003), astro-ph/0309368.

    Google Scholar 

  10. Barris B.J. et al. (2004). “23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN sample at z > 0.7”. Astrophys. J. 602:571–594 astro-ph/0310843

    Article  ADS  Google Scholar 

  11. Supernova Search Team Collaboration, A. G. Riess et al., “Type Ia Supernova Discoveries at z>1 From the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution,” Astrophys. J. 607, 665–687 (2004), astro-ph/0402512.

  12. Bennett C.L. et al. (2003). “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary maps and basic results”. Astrophys. J. Suppl. 148:1 astro-ph/0302207

    Article  ADS  Google Scholar 

  13. WMAP Collaboration, D. N. Spergel et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of cosmological parameters,” Astrophys. J. Suppl. 148, 175 (2003) astro-ph/0302209.

  14. Boomerang Collaboration, C. B. Netterfield et al., “A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background,” Astrophys. J. 571, 604–614 (2002), astro-ph/0104460.

  15. Boomerang Collaboration., de Bernardis P. et al. “A flat universe from high-resolution maps of the cosmic microwave background radiation”. Nature 404 (2000), astro-ph/0004404.

  16. SDSS Collaboration, M. Tegmark et al., “The 3D power spectrum of galaxies from the SDSS,” Astrophys. J. 606, 702–740 (2004), astro-ph/0310725.

    Google Scholar 

  17. Afshordi N., Loh Y.-S., and Strauss M.A. (2004). “Cross-correlation of the cosmic microwave background with the 2MASS Galaxy Survey: Signatures of dark energy, hot gas, and point sources”. Phys. Rev. D 69 astro-ph/0308260

    Article  ADS  Google Scholar 

  18. Freedman W.L. et al. (2001). “Final results from the Hubble Space Telescope Key Project to measure the Hubble Constant”. Astrophys. J. 553:47–72 astro-ph/0012376

    Article  ADS  Google Scholar 

  19. A. D. Dolgov, “The Cosmological Constant Problem,” Talk presented at Rencontre de Moriond Astrophysics Session, Les Arcs, France, March 5–12, 1989.

  20. Weinberg S. (1989). Rev. Mod. Phys 61:1

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Sahni V. and Starobinsky A.A. (2000). “The case for a positive cosmological Lambda-term”. Int. J. Mod. Phys. D 9:373–444 astro-ph/9904398

    Article  ADS  Google Scholar 

  22. Carroll S.M. (2001). “The cosmological constant”. Living Rev. Rel. 4:1 astro-ph/0004075.

    Google Scholar 

  23. S. Weinberg, “The cosmological constant problems,” astro-ph/0005265.

  24. Padmanabhan T. (2003). “Cosmological constant: The weight of the vacuum”. Phys. Rept. 380:235–320 hep-th/0212290.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Peebles P.J.E. and Ratra B. (2003). “The cosmological constant and dark energy”. Rev. Mod. Phys. 75:559–606 astro-ph/0207347.

    Article  ADS  MathSciNet  Google Scholar 

  26. N. Straumann, “The history of the cosmological constant problem,” gr-qc/0208027.

  27. U. Ellwanger, “The cosmological constant,” hep-ph/0203252.

  28. J. Yokoyama, “Issues on the cosmological constant,” gr-qc/0305068.

  29. T. Banks, “Cosmological breaking of supersymmetry or little Lambda goes back to the future. II,” hep-th/0007146.

  30. Bautier K., Deser S., Henneaux M., and Seminara D. (1997). “No cosmological D = 11 supergravity”. Phys. Lett. B 406:49–53 hep-th/9704131.

    Article  ADS  MathSciNet  Google Scholar 

  31. Bailin D. and Love A. (1994). Supersymmetric Gauge Field Theory and String Theory. Graduate Student Series in Physics. Institute of Physics Publishing, Bristol

    MATH  Google Scholar 

  32. Grifols J.A., Mohapatra R.N., and Riotto A. (1997). “New astrophysical constraints on the mass of the superlight gravitino”. Phys. Lett. B 400:124–128 hep-ph/9612253.

    Article  ADS  Google Scholar 

  33. Lahanas A.B. and Nanopoulos D.V. (1987). “The road to no scale supergravity”. Phys. Rept. 145:1

    Article  ADS  Google Scholar 

  34. Witten E. (1985). “Dimensional reduction of superstring models”. Phys. Lett. B 155:151

    Article  ADS  MathSciNet  Google Scholar 

  35. Witten E. (1995). “Is supersymmetry really broken?”. Int. J. Mod. Phys. A 10:1247–1248 hep-th/9409111

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. E. Witten, “The cosmological constant from the viewpoint of string theory,” hep-ph/0002297 v2.

  37. Deser S., Jackiw R., and ’t Hooft G. (1984). Ann. Phys 152:220

    Article  ADS  MathSciNet  Google Scholar 

  38. Henneaux M. (1984). “Energy momentum, angular momentum, and Supercharge IN 2+1 supergravity”. Phys. Rev. D 29:2766–2768

    Article  ADS  MathSciNet  Google Scholar 

  39. Becker K., Becker M., and Strominger A. (1995). “Three-dimensional supergravity and the cosmological constant”. Phys. Rev. D 51:6603–6607 hep-th/9502107

    Article  ADS  MathSciNet  Google Scholar 

  40. G. R. Dvali, “Cosmological constant and Fermi-Bose degeneracy,” hep-th/0004057.

  41. Edelstein J.D., Nunez C., Schaposnik F.A. (1996). “Bogomol’nyi bounds and killing spinors in d=3 supergravity”. Phys. Lett. B 375:163–169 hep-th/9512117

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Edelstein J.D. (1997). “Semi-local cosmic strings and the cosmological constant problem”. Phys. Lett. B 390:101–106 hep-th/9610163.

    Article  ADS  Google Scholar 

  43. Gregory R., Rubakov V.A., Sibiryakov S.M. (2000). “Opening up extra dimensions at ultra-large scales”. Phys. Rev. Lett. 84:5928–5931 hep-th/0002072

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  44. Csaki C., Erlich J., Hollowood T.J. (2000). “Quasi-localization of gravity by resonant modes”. Phys. Rev. Lett. 84:5932–5935 hep-th/0002161

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  45. Dvali G.R., Gabadadze G., Porrati M. (2000). “Metastable gravitons and infinite volume extra dimensions”. Phys. Lett. B 484:112–118 hep-th/0002190.

    Article  ADS  MathSciNet  Google Scholar 

  46. R. Erdem, “A symmetry for vanishing cosmological constant in an extra dimensional toy model,” hep-th/0410063.

  47. G. R. Dvali, G. Gabadadze, and G. Senjanovic, “Constraints on extra time dimensions,” hep-ph/9910207.

  48. Berezhiani Z., Chaichian M., Kobakhidze A.B., and Yu Z.H. (2001). “Vanishing of cosmological constant and fully localized gravity in a brane world with extra time(s)”. Phys. Lett. B 517:387–396 hep-th/0102207

    Article  MATH  ADS  Google Scholar 

  49. D. E. Kaplan and R. Sundrum, “A symmetry for the cosmological constant,” hep-th/0505265.

  50. Deser S. (1970). Ann. Phys 54:248

    ADS  MathSciNet  Google Scholar 

  51. Dirac P.A.M. (1973). “Long range forces and broken symmetries”. Proc. Roy. Soc. Lond. A 333:403–418

    ADS  MathSciNet  Google Scholar 

  52. Zee A. (1979). “A broken symmetric theory of gravity”. Phys. Rev. Lett. 42:417

    Article  ADS  Google Scholar 

  53. A. Zee, “Gravity as a dynamical consequence of the strong, weak, and electromagnetic interactions,” in Proc. of Erice Conf. on Unification of Fundamental Interactions, Erice, Italy, Oct. 6–14, 1981, in press.

  54. Zee A. (1981). “Spontaneously generated gravity”. Phys. Rev. D 23:858

    Article  ADS  Google Scholar 

  55. Zee A. (1982). “A theory of gravity based on the Weyl–Eddington action”. Phys. Lett. B 109:183

    Article  ADS  Google Scholar 

  56. Zee A. (1983). “Einstein gravity emerging from quantum Weyl gravity”. Ann. Phys. 151:431

    Article  ADS  MathSciNet  Google Scholar 

  57. R. Booth, “Scale invariant gravity and the quasi-static universe,” gr-qc/0203065.

  58. Barbour J. (2003). “Scale-invariant gravity: particle dynamics”. Class. Quant. Grav. 20:1543–1570 gr-qc/0211021.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. Mannheim P.D. (2000). “Attractive and repulsive gravity”. Found. Phys. 30:709–746 gr-qc/0001011.

    Article  ADS  MathSciNet  Google Scholar 

  60. Mannheim P.D. (2001). “Cosmic acceleration as the solution to the cosmological constant problem”. Astrophys. J. 561:1–12 astro-ph/9910093

    Article  ADS  MathSciNet  Google Scholar 

  61. P. D. Mannheim, “Conformal gravity and a naturally small cosmological constant,” astro-ph/9901219.

  62. Mannheim P.D. (1996). “Local and global gravity”. Found. Phys. 26:1683–1709 gr-qc/9611038

    Article  ADS  MathSciNet  Google Scholar 

  63. P. D. Mannheim and D. Kazanas, “Higgs mechanism and the structure of the energy–momentum tensor in Einstein gravity and conformal gravity,” gr-qc/9409050.

  64. Mannheim P.D. and Kazanas D. (1994). “Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation”. Gen. Rel. Grav. 26:337–361

    Article  ADS  Google Scholar 

  65. Perlick V. and Xu C. (1995). “Matching exterior to interior solutions in Weyl gravity: Comment on ‘Exact Vacuum Solution to Conformal Weyl Gravity and Galactic Rotation Curves”’. Ap. J. 449:47–51

    Article  ADS  Google Scholar 

  66. van der Bij J.J., van Dam H., Ng Y.J. (1982). “The exchange of massless spin-two particles”. Physica 116A:307

    ADS  Google Scholar 

  67. Unruh W.G. (1989). “A unimodular theory of canonical quantum gravity”. Phys. Rev. D 40:1048

    Article  ADS  MathSciNet  Google Scholar 

  68. Anderson J. and Finkelstein D. (1971). Am. J. Phys 39:901

    Article  ADS  Google Scholar 

  69. van der Bij J.J., van Dam H., Ng Y.J. (1982). “Theory of gravity and the cosmological term: The Little Group viewpoint”. Physica 116A:307

    ADS  Google Scholar 

  70. Padmanabhan T. (2004). “Gravity as elasticity of spacetime: A paradigm to understand horizon thermodynamics and cosmological constant”. Int. J. Mod. Phys. D 13:2293–2298 gr-qc/0408051

    Article  MATH  ADS  MathSciNet  Google Scholar 

  71. Padmanabhan T. (2005). “Dark energy: The cosmological challenge of the millennium”. Curr. Sci. 88:1057 astro-ph/0411044

    ADS  Google Scholar 

  72. DeWitt B.S. (1967). “Quantum theory of gravity. 1. The canonical theory”. Phys. Rev. 160:1113–1148

    Article  MATH  ADS  Google Scholar 

  73. DeWitt B.S. (1967). “Quantum theory of gravity. II. The manifestly covariant theory”. Phys. Rev. 162:1195–1239

    Article  ADS  Google Scholar 

  74. G. ’t Hooft, “Quantum gravity: A fundamental problem and some radical ideas,” Talk given at 8th Conf. on General Relativity and Gravitation, Waterloo, Canada, Aug. 7–12, 1977, Published in Cargese Summer Inst. 1978:0323.

  75. Mazur P.O. and Mottola E. (1990). “The gravitational measure, solution of the conformal factor problem and stability of the ground state of quantum gravity”. Nucl. Phys. B 341:187–212

    Article  MATH  ADS  MathSciNet  Google Scholar 

  76. G. ’t Hooft, “Dimensional reduction in quantum gravity,” gr-qc/9310026.

  77. S. D. Thomas, “Holographic vacuum energy,” hep-th/0010145.

  78. Cohen A.G., Kaplan D.B., and Nelson A.E. (1999). “Effective field theory, black holes, and the cosmological constant”. Phys. Rev. Lett. 82:4971–4974 hep-th/9803132

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. Hsu S.D.H. (2004). “Entropy bounds and dark energy”. Phys. Lett. B 594:13–16 hep-th/0403052

    Article  ADS  Google Scholar 

  80. Turner M.S. (2002). “Making sense of the new cosmology”. Int. J. Mod. Phys. A 17S1:180–196 astro-ph/0202008

    Google Scholar 

  81. B. Kelleher, “Scale-invariant gravity. II: Geometrodynamics,” gr-qc/0310109.

  82. Li M. (2004). “A model of holographic dark energy”. Phys. Lett. B 603:1 hep-th/0403127

    Article  ADS  Google Scholar 

  83. T. Banks, “Cosmological breaking of supersymmetry or little Lambda goes back to the future. II,” hep-th/0007146.

  84. Bousso R., DeWolfe O., and Myers R.C. (2003). “Unbounded entropy in spacetimes with positive cosmological constant”. Found. Phys. 33:297–321 hep-th/0205080

    Article  MathSciNet  Google Scholar 

  85. Volovik G.E. (2001). “Superfluid analogies of cosmological phenomena”. Phys. Rept. 351:195–348 gr-qc/0005091

    Article  MATH  ADS  MathSciNet  Google Scholar 

  86. G. E. Volovik, “Vacuum energy and cosmological constant: View from condensed matter,” gr-qc/0101111.

  87. G. E. Volovik, “Vacuum in quantum liquids and in general relativity,” gr-qc/0104046.

  88. G. Volovik, “Effective gravity and quantum vacuum in superfluids,” in Artificial Black Holes, M. Novello et al, eds., pp. 127–177.

  89. Volovik G.E. (2003). The Universe in a Helium Droplet. Clarendon, Oxford, UK, p. 509

    MATH  Google Scholar 

  90. G. E. Volovik, “Phenomenology of effective gravity,” gr-qc/0304061.

  91. Volovik G.E. (2005). “Cosmological constant and vacuum energy”. Annalen Phys. 14:165–176 gr-qc/0405012

    Article  MATH  ADS  MathSciNet  Google Scholar 

  92. G. E. Volovik, “Vacuum energy: Quantum hydrodynamics vs quantum gravity,” gr-qc/0505104.

  93. Kleinert H. and Zaanen J. (2004). “Nematic world crystal model of gravity explaining the absence of torsion”. Phys. Lett. A 324:361–365 gr-qc/0307033

    Article  MATH  ADS  Google Scholar 

  94. Shapiro I.L. and Sola J. (2002). “Scaling behavior of the cosmological constant: Interface between quantum field theory and cosmology”. JHEP 02:006 hep-th/0012227

    Article  ADS  MathSciNet  Google Scholar 

  95. Linde A. (1988). “The universe multiplication and the cosmological constant problem”. Phys. Lett. B 200:272

    Article  ADS  Google Scholar 

  96. A. Linde, “Inflation, quantum cosmology and the anthropic principle,” 0211048 v2.

  97. U. Ellwanger, “Vanishing cosmological constant via gravitational S- duality,” 0410265.

  98. H. Nishino and S. Rajpoot, “Hodge duality and cosmological constant,” 0404088.

  99. Prokopec T. and Woodard R.P. (2004). “Vacuum polarization and photon mass in inflation”. Am. J. Phys. 72:60–72 astro-ph/0303358

    Article  ADS  Google Scholar 

  100. Ford L.H. (1985). “Quantum instability of De Sitter spacetime”. Phys. Rev. D 31:710

    Article  ADS  MathSciNet  Google Scholar 

  101. L. Ford, “What does quantum field theory in curved spacetime have to say about the dark energy?,” hep-th/0210096.

  102. A. D. Dolgov, “An Attempt to get Rid of the Cosmological Constant,” in Proceedings, The Very Early Universe, Cambridge, 1982, pp. 449–458.

  103. A. D. Dolgov and M. Kawasaki, “Realistic cosmological model with dynamical cancellation of vacuum energy,” astro-ph/0307442.

  104. A. D. Dolgov and M. Kawasaki, “Stability of a cosmological model with dynamical cancellation of vacuum energy,” astro-ph/0310822.

  105. Dolgov A.D. (2005). “Problems of cosmological constant, dark energy and possible adjustment mechanism”. Int. J. Mod. Phys. A 20:2403–2414

    Article  ADS  Google Scholar 

  106. Peccei R.D., Sola J., and Wetterich C. (1987). “Adjusting the cosmological constant dynamically: Cosmons and a new force weaker than gravity”. Phys. Lett. B 195:183

    Article  ADS  Google Scholar 

  107. Mukohyama S. and Randall L. (2004). “A dynamical approach to the cosmological constant”. Phys. Rev. Lett. 92:211302 hep-th/0306108

    Article  PubMed  ADS  Google Scholar 

  108. Mukohyama S. (2004). “Gravity in the dynamical approach to the cosmological constant”. Phys. Rev. D 70:063505 hep-th/0306208

    Article  ADS  Google Scholar 

  109. Rubakov V.A. (2000). “Relaxation of the cosmological constant at inflation?”. Phys. Rev. D 61:061501 hep-ph/9911305

    Article  ADS  MathSciNet  Google Scholar 

  110. Hebecker A. and Wetterich C. (2000). “Quintessential adjustment of the cosmological constant”. Phys. Rev. Lett. 85:3339–3342 hep-ph/0003287

    Article  PubMed  ADS  Google Scholar 

  111. A. Hebecker, “On dynamical adjustment mechanisms for the cosmological constant,” hep-ph/0105315.

  112. Wetterich C. (2003). “Conformal fixed point, cosmological constant and quintessence”. Phys. Rev. Lett. 90:231302 hep-th/0210156

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  113. Wetterich C. (1988). “Cosmology and the fate of dilatation symmetry”. Nucl. Phys. B 302:668

    Article  ADS  Google Scholar 

  114. R. Brandenberger, “Back reaction of cosmological perturbations and the cosmological constant problem,” hep-th/0210165.

  115. Geshnizjani G. and Brandenberger R. (2002). “Back reaction and local cosmological rate”. Phys. Rev. D 66:123507 gr-qc/0204074

    Article  ADS  Google Scholar 

  116. Grishchuk L.P. (1994). “Density perturbations of quantum mechanical origin and anisotropy of the microwave background”. Phys. Rev. D 50:7154–7172 gr-qc/9405059

    Article  ADS  Google Scholar 

  117. Martin J. and Schwarz D.J. (1998). “The influence of cosmological transitions on the of density perturbations”. Phys. Rev. D 57:3302–3316 gr-qc/9704049

    Article  ADS  Google Scholar 

  118. Mukhanov V.F., Abramo L.R.W., Brandenberger R.H. (1997). “On the back reaction problem for gravitational perturbations”. Phys. Rev. Lett. 78:1624–1627 gr-qc/9609026

    Article  ADS  Google Scholar 

  119. Abramo L.R.W., Brandenberger R.H. and Mukhanov V.F. (1997). “The energy–momentum tensor for cosmological perturbations”. Phys. Rev. D 56:3248–3257 gr-qc/9704037

    Article  ADS  Google Scholar 

  120. L. P. Grishchuk, “Comment on the ‘Influence of cosmological transitions on the of density perturbations’,” gr-qc/9801011.

  121. J. Martin and D. J. Schwarz, “Reply to: Comment on ‘The influence of cosmological transitions on the evolution of density perturbations’,” gr-qc/9805069.

  122. W. Unruh, “Cosmological long wavelength perturbations,” astro-ph/9802323.

  123. P. Martineau and R. Brandenberger, “Back-reaction: A cosmological panacea,” astro-ph/0510523.

  124. Kodama H. and Hamazaki T. (1998). “Evolution of cosmological perturbations in the long wavelength limit”. Phys. Rev. D 57:7177–7185 gr-qc/9712045

    Article  ADS  Google Scholar 

  125. Abramo L.R. and Woodard R.P. (2002). “Back-reaction is for real”. Phys. Rev. D 65:063516 astro-ph/0109273

    Article  ADS  Google Scholar 

  126. Geshnizjani G. and Brandenberger R. (2005). “Back reaction of perturbations in two scalar field inflationary models”. JCAP 0504:006 hep-th/0310265

    Google Scholar 

  127. R. H. Brandenberger and C. S. Lam, “Back-reaction of cosmological perturbations in the infinite wavelength approximation,” hep-th/0407048.

  128. A. Ishibashi and R. M. Wald, “Can the acceleration of our universe be explained by the effects of inhomogeneities?,” gr-qc/0509108.

  129. Tsamis N.C. and Woodard R.P. (1993). “Relaxing the cosmological constant”. Phys. Lett. B 301:351–357

    Article  ADS  Google Scholar 

  130. Tsamis N.C. and Woodard R.P. (1996). “Quantum gravity slows inflation”. Nucl. Phys. B 474:235–248 hep-ph/9602315

    Article  MATH  ADS  MathSciNet  Google Scholar 

  131. Tsamis N.C. and Woodard R.P. (1997). “The quantum gravitational back-reaction on inflation”. Ann. Phys. 253:1–54 hep-ph/9602316

    Article  MATH  ADS  MathSciNet  Google Scholar 

  132. Tsamis N.C. and Woodard R.P. (1995). “Strong infrared effects in quantum gravity”. Ann. Phys. 238:1–82

    Article  ADS  MathSciNet  Google Scholar 

  133. Tsamis N.C. and Woodard R.P. (1998). “Nonperturbative models for the quantum gravitational back- reaction on inflation”. Ann. Phys. 267:145–192 hep-ph/9712331

    Article  MATH  ADS  MathSciNet  Google Scholar 

  134. Tsamis N.C. and Woodard R.P. (2004). “Post-inflationary dynamics”. JCAP 0405:006 hep-ph/0303175

    ADS  Google Scholar 

  135. Tsamis N.C. and Woodard R.P. (2004). “Improved estimates of cosmological perturbations”. Phys. Rev. D 69:084005 astro-ph/0307463

    Article  ADS  Google Scholar 

  136. Weinberg S. (1965). “Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations”. Phys. Rev. 138:B988–B1002

    Article  ADS  MathSciNet  Google Scholar 

  137. T. Banks and W. Fischler, “An upper bound on the number of e-foldings,” astro-ph/0307459.

  138. Starobinsky A.A. and Yokoyama J. (1994). “Equilibrium state of a selfinteracting scalar field in the De Sitter background”. Phys. Rev. D 50:6357–6368 astro-ph/9407016

    Article  ADS  Google Scholar 

  139. Abramo L.R. and Woodard R.P. (2002). “Back-reaction is for real”. Phys. Rev. D 65:063516 astro-ph/0109273

    Article  ADS  Google Scholar 

  140. R. P. Woodard, “De Sitter breaking in field theory,” gr-qc/0408002.

  141. Tomboulis E.T. (1990). “Dynamically adjusted cosmological constant and conformal anomalies”. Nucl. Phys. B 329:410

    Article  ADS  Google Scholar 

  142. Antoniadis I. and Mottola E. (1992). “4-D quantum gravity in the conformal sector”. Phys. Rev. D 45:2013–2025

    Article  ADS  MathSciNet  Google Scholar 

  143. Antoniadis I., Mazur P.O., and Mottola E. (1998). “Fractal geometry of quantum spacetime at large scales”. Phys. Lett. B 444:284–292 hep-th/9808070

    Article  ADS  MathSciNet  Google Scholar 

  144. Odintsov S.D. and Shapiro I.L. (1991). “Perturbative approach to induced quantum”. Class. Quant. Grav. 8:L57–L60

    Article  ADS  MathSciNet  Google Scholar 

  145. I. L. Shapiro, “Asymptotically finite theories and the screening of cosmological constant by quantum effects,” Phys. Lett. B 329, 181 (1994). Prepared for 20th International Colloquium on Group Theoretical Methods in Physics, Toyonaka, Japan, 4–9 Jul. 1994.

  146. Elizalde E., Odintsov S.D., and Shapiro I.L. (1994). “Asymptotic regimes in quantum gravity at large distances and running Newtonian and cosmological constants”. Class. Quant. Grav. 11:1607–1614 hep-th/9404064

    Article  ADS  MathSciNet  Google Scholar 

  147. I. L. Shapiro, J. Sola, and H. Stefancic, “Running G and Lambda at low energies from physics at M(X): Possible cosmological and astrophysical implications,” hep-ph/0410095.

  148. Babic A., Guberina B., Horvat R., and Stefancic H. (2005). “Renormalization-group running cosmologies: A scale-setting procedure”. Phys. Rev. D 71:124041

    Article  ADS  Google Scholar 

  149. Reuter M. and Weyer H. (2004). “Quantum gravity at astrophysical distances?”. JCAP 0412:001 hep-th/0410119

    ADS  Google Scholar 

  150. Espana-Bonet C., Ruiz-Lapuente P., Shapiro I.L., and Sola J. (2004). “Testing the running of the cosmological constant with type Ia supernovae at high z”. JCAP 0402:006 hep-ph/0311171

    ADS  Google Scholar 

  151. Sola J. and Stefancic H. (2005). “Effective equation of state for dark energy: Mimicking quintessence and phantom energy through a variable Lambda”. Phys. Lett. B 624:147–157 astro-ph/0505133

    Article  ADS  Google Scholar 

  152. Reuter M. and Weyer H. (2004). “Renormalization group improved gravitational actions: A Brans–Dicke approach”. Phys. Rev. D 69:104022 hep-th/0311196

    Article  ADS  Google Scholar 

  153. R. Jackiw, C. Nunez, and S. Y. Pi, “Quantum relaxation of the cosmological constant,” hep-th/0502215.

  154. Wilson K.G. (1971). “Renormalization group and critical phenomena 2 Phase space cell analysis of critical behavior”. Phys. Rev. B 4:3184–3205

    Article  Google Scholar 

  155. Polyakov A.M. (2001). “String theory as a universal language”. Phys. Atom. Nucl. 64:540–547 hep-th/0006132

    Article  ADS  Google Scholar 

  156. Will C.M. (2001). “The confrontation between general relativity and experiment”. Living Rev. Rel. 4:4 gr-qc/0103036

    MathSciNet  Google Scholar 

  157. Durrer R. and Kocian P. (2004). “Testing braneworlds with the binary pulsar”. Class. Quant. Grav. 21:2127–2138 hep-th/0305181

    Article  MATH  ADS  Google Scholar 

  158. Rubakov V.A. and Shaposhnikov M.E. (1983). “Extra spacetime dimensions: Towards a solution to the cosmological constant problem”. Phys. Lett. B 125:139

    Article  ADS  Google Scholar 

  159. H. Nilles, A. Papazoglou, and G. Tasinato, “Selftuning and its footprints,” hep-th/0309042.

  160. Aghababaie Y., Burgess C.P., Parameswaran S.L., Quevedo F. (2004). “Towards a naturally small cosmological constant from branes in 6D supergravity”. Nucl. Phys. B 680:389–414 hep-th/0304256

    Article  MATH  ADS  MathSciNet  Google Scholar 

  161. Burgess C.P. (2005). “Towards a natural theory of dark energy: Supersymmetric large extra dimensions”. AIP Conf. Proc. 743:417–449

    Article  ADS  Google Scholar 

  162. C. P. Burgess, “Supersymmetric large extra dimensions and the cosmological constant problem,” hep-th/0510123.

  163. Verlinde E. and Verlinde H. (2000). “RG-flow, gravity and the cosmological constant”. JHEP 05:034 hep-th/9912018

    Article  ADS  MathSciNet  Google Scholar 

  164. Verlinde E.P. (2000). “On RG-flow and the cosmological constant”. Class. Quant. Grav. 17:1277–1285 hep-th/9912058

    Article  MATH  ADS  MathSciNet  Google Scholar 

  165. Schmidhuber C. (2000). “AdS(5) and the 4d cosmological constant”. Nucl. Phys. B 580:140–146 hep-th/9912156

    Article  MATH  ADS  MathSciNet  Google Scholar 

  166. Schmidhuber C. (2000). “Micrometer gravitinos and the cosmological constant”. Nucl. Phys. B 585:385–394 hep-th/0005248

    Article  ADS  Google Scholar 

  167. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and G. Gabadadze, “Non-local modification of gravity and the cosmological constant problem,” hep-th/0209227.

  168. Dvali G.R., Gabadadze G., and Porrati M. (2000). “4D gravity on a brane in 5D Minkowski space”. Phys. Lett. B 485: 208–214 hep-th/0005016

    Article  MATH  ADS  MathSciNet  Google Scholar 

  169. Dvali G.R. and Gabadadze G. (2001). “Gravity on a brane in infinite-volume extra space”. Phys. Rev. D 63:065007 hep-th/0008054

    Article  ADS  MathSciNet  Google Scholar 

  170. Dvali G., Gabadadze G., Shifman M. (2003). “Diluting cosmological constant in infinite volume extra dimensions”. Phys. Rev. D 67: 044020 hep-th/0202174

    Article  ADS  MathSciNet  Google Scholar 

  171. G. Dvali, G. Gabadadze, and M. Shifman, “Diluting cosmological constant in infinite volume extra dimensions,” hep-th/0208096 v1.

  172. G. Gabadadze, “Looking at the cosmological constant from infinite-volume bulk,” hep-th/0408118.

  173. Sakharov A.D. (1968). “Vacuum quantum fluctuations in curved space and the theory of gravitation”. Sov. Phys. Dokl. 12:1040–1041

    ADS  Google Scholar 

  174. Sundrum R. (1999). “Compactification for a three-brane universe”. Phys. Rev. D 59:085010 hep-ph/9807348

    Article  ADS  MathSciNet  Google Scholar 

  175. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and G. Gabadadze, “Non-local modification of gravity and the cosmological constant problem,” hep-th/0209227.

  176. Moffat J.W. (2003). “The cosmological constant problem and nonlocal quantum gravity”. AIP Conf. Proc. 646:130–138 hep-th/0207198

    Article  ADS  Google Scholar 

  177. J. W. Moffat, “Cosmological constant problem,” gr-qc/0312115.

  178. Fierz M. and Pauli W. (1939). “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”. Proc. Roy. Soc. Lond. A 173:211–232

    Article  MATH  ADS  MathSciNet  Google Scholar 

  179. van Dam H. and Veltman M.J.G. (1970). “Massive and massless Yang–Mills and gravitational fields”. Nucl. Phys. B 22:397–411

    Article  ADS  Google Scholar 

  180. Zakharov V.I. (1970). JETP 12:312

    Google Scholar 

  181. Luty M.A., Porrati M., and Rattazzi R. (2003). “Strong interactions and stability in the DGP model”. JHEP 09:029 hep-th/0303116

    Article  ADS  MathSciNet  Google Scholar 

  182. V. A. Rubakov, “Strong coupling in brane-induced gravity in five dimensions,” hep-th/0303125.

  183. Porrati M. and Rombouts J.W. (2004). “Strong coupling vs. 4-D locality in induced gravity”. Phys. Rev. D 69:122003 hep-th/0401211

    Article  ADS  MathSciNet  Google Scholar 

  184. Nicolis A. and Rattazzi R. (2004). “Classical and quantum consistency of the DGP model”. JHEP 06:059 hep-th/0404159

    Article  ADS  MathSciNet  Google Scholar 

  185. Deffayet C. and Rombouts J. (2005). “Ghosts, strong coupling and accidental symmetries in massive gravity”. Phys. Rev. D 72:044003 gr-qc/0505134

    Article  ADS  Google Scholar 

  186. A. Lue, “The phenomenology of Dvali–Gabadadze–Porrati cosmologies,” astro-ph/0510068.

  187. K. Koyama, “Are there ghosts in the self-accelerating brane universe?,”

  188. G. Gabadadze and A. Iglesias, “Short distance non-perturbative effects of large distance modified gravity,” hep-th/0508201.

  189. Will C.M., Yunes N. (2004). “Testing alternative theories of gravity using LISA”. Class. Quant. Grav. 21:4367 gr-qc/0403100

    Article  MATH  ADS  Google Scholar 

  190. Arkani-Hamed N., Cheng H., Luty M.A., and Mukohyama S. (2004). “Ghost condensation and a consistent infrared modification of gravity”. JHEP 05:074

    Article  MathSciNet  Google Scholar 

  191. B. R. Heckel, E. G. Adelberger, J. H. Gundlach, M. G. Harris, and H. E. Swanson, “Torsion balance test of spin coupled forces”. Prepared for International Conference on Orbis Scientiae 1999: Quantum Gravity, Generalized Theory of Gravitation and Superstring Theory Based Unification (28th Conference on High-Energy Physics and Cosmology Since 1964), Coral Gables, Florida, Dec. 16–19, 1999.

  192. Phillips D.F. et al. (2001). “Limit on Lorentz and CPT violation of the proton using a hydrogen maser”. Phys. Rev. D 63:111101 physics/0008230

    Article  ADS  Google Scholar 

  193. Bluhm R. (2004). “Lorentz and CPT tests in matter and antimatter”. Nucl. Instrum. Meth. B 221:6–11 hep-ph/0308281

    Article  ADS  Google Scholar 

  194. Cane F. et al. (2004). “Bound on Lorentz- and CPT-violating boost effects for the neutron”. Phys. Rev. Lett. 93:230801 physics/0309070

    Article  PubMed  ADS  Google Scholar 

  195. Dubovsky S.L. (2004). “Star tracks in the ghost”. JCAP 0407:009 hep-ph/0403308

    ADS  Google Scholar 

  196. Arkani-Hamed N., Creminelli P., Mukohyama S., Zaldarriaga M. (2004). “Ghost inflation”. JCAP 0404:001 hep-th/0312100

    ADS  MathSciNet  Google Scholar 

  197. Krotov D., Rebbi C., Rubakov V.A., Zakharov V. (2005). “Holes in the ghost”. Phys. Rev. D 71:045014 hep-ph/0407081

    Article  ADS  Google Scholar 

  198. Sundrum R. (2004). “Fat gravitons, the cosmological constant and sub-millimeter tests”. Phys. Rev. D 69:044014 hep-th/0306106

    Article  ADS  MathSciNet  Google Scholar 

  199. Weinberg S. and Witten E. (1980). “Limits on massless particles”. Phys. Lett. B 96:59

    Article  ADS  MathSciNet  Google Scholar 

  200. Kraus P. and Tomboulis E.T. (2002). “Photons and gravitons as Goldstone bosons, and the cosmological constant”. Phys. Rev. D 66:045015 hep-th/0203221

    Article  ADS  Google Scholar 

  201. Jenkins A. (2004). “Spontaneous breaking of Lorentz invariance”. Phys. Rev. D 69:105007 hep-th/0311127

    Article  ADS  Google Scholar 

  202. Zee A. (2004). “Dark energy and the nature of the graviton”. Phys. Lett. B 594:8–12 hep-th/0309032

    Article  ADS  Google Scholar 

  203. Zee A. (2004). “The graviton and the nature of dark energy”. Mod. Phys. Lett. A 19:983–992 hep-th/0403064

    Article  ADS  Google Scholar 

  204. Dvali G., Gruzinov A., and Zaldarriaga M. (2003). “The accelerated universe and the Moon”. Phys. Rev. D 68:024012 hep-ph/0212069

    Article  ADS  Google Scholar 

  205. Aurilia A., Nicolai H., and Townsend P.K. (1980). “Hidden constants: The theta parameter of QCD and the cosmological constant of N = 8 Supergravity”. Nucl. Phys. B 176:509

    Article  ADS  MathSciNet  Google Scholar 

  206. Duff M.J. and van Nieuwenhuizen P. (1980). “Quantum inequivalence of different field representations”. Phys. Lett. B 94:179

    Article  ADS  Google Scholar 

  207. Baum E. (1983). Phys. Lett. B 133:185

    Article  ADS  MathSciNet  Google Scholar 

  208. Gomberoff A., Henneaux M., Teitelboim C., and Wilczek F. (2004). “Thermal decay of the cosmological constant into black holes”. Phys. Rev. D 69:083520 hep-th/0311011

    Article  ADS  Google Scholar 

  209. Brown J.D. and Teitelboim C. (1988). “Neutralization of the cosmological constant by membrane creation”. Nucl. Phys. B 297:787–836

    Article  ADS  MathSciNet  Google Scholar 

  210. Brown J.D. and Teitelboim C. (1987). “Dynamical neutralization of the cosmological constant”. Phys. Lett. B 195:177–182

    Article  ADS  Google Scholar 

  211. Hawking S. (1984). “The cosmological constant is probably zero”. Phys. Lett. B 134:403

    Article  ADS  MathSciNet  Google Scholar 

  212. Duff M.J. (1989). “The cosmological constant is possibly zero, but the proof is probably wrong”. Phys. Lett. B 226:36

    Article  ADS  MathSciNet  Google Scholar 

  213. Bousso R. and Polchinski J. (2000). “Quantization of four-form fluxes and dynamical neutralization of the cosmological constant”. JHEP 06:006 hep-th/0004134

    Article  ADS  MathSciNet  Google Scholar 

  214. Coleman S.(1988). “Why there is nothing, rather than something: A theory of the cosmological constant”. Nucl. Phys. B 310:643

    Article  ADS  Google Scholar 

  215. Hawking S.W. (1987). “Quantum coherence down the wormhole”. Phys. Lett. B 195:337

    Article  ADS  MathSciNet  Google Scholar 

  216. Strominger A. (1984). “Vacuum topology and incoherence in quantum gravity”. Phys. Rev. Lett. 52:1733

    Article  ADS  MathSciNet  Google Scholar 

  217. Coleman S.R. (1988). “Black holes as red herrings: Topological fluctuations and the loss of quantum coherence”. Nucl. Phys. B 307:867

    Article  ADS  Google Scholar 

  218. Fischler W. and Susskind L. (1989). “A wormhole catastrophe”. Phys. Lett. B 217:48

    Article  ADS  MathSciNet  Google Scholar 

  219. Polchinski J. (1989). “Decoupling versus excluded volume or return of the giant wormholes”. Nucl. Phys. B 325:619

    Article  ADS  MathSciNet  Google Scholar 

  220. Preskill J. (1989). “Wormholes in spacetime and the constants of nature”. Nucl. Phys. B 323:141

    Article  ADS  MathSciNet  Google Scholar 

  221. Coleman S.R. and Lee K. (1989). “Escape from the menace of the giant wormholes”. Phys. Lett. B 221:242

    Article  ADS  MathSciNet  Google Scholar 

  222. Weinberg S. (1987). “Anthropic bound on the cosmological constant”. Phys. Rev. Lett. 59:2607

    Article  PubMed  ADS  Google Scholar 

  223. Banks T. (1985). “T C P, quantum gravity, the cosmological constant and all that..”. Nucl. Phys. B 249:332

    Google Scholar 

  224. Barrow J. and Tipler F. (1986). The Anthropic Cosmological Principle. Clarendon, Oxford

    Google Scholar 

  225. Garriga J., Linde A., and Vilenkin A. (2004). “Dark energy equation of state and anthropic selection”. Phys. Rev. D 69:063521 hep-th/0310034

    Article  ADS  Google Scholar 

  226. Pogosian L., Vilenkin A., and Tegmark M. (2004). “Anthropic predictions for vacuum energy and neutrino masses”. JCAP 0407: 005 astro-ph/0404497

    ADS  Google Scholar 

  227. Kallosh R. and Linde A. (2003). “M-theory, cosmological constant and anthropic principle”. Phys. Rev. D 67:023510 hep-th/0208157

    Article  ADS  MathSciNet  Google Scholar 

  228. Vilenkin A. (1995). “Predictions from quantum cosmology”. Phys. Rev. Lett. 74:846 gr-qc/9406010

    Article  PubMed  ADS  Google Scholar 

  229. Linde A. (1983). “The Very Early Universe”. In: Gibbons G.W., Hawking S.W., Siklos S. (eds) The New Inflationary Universe Scenario. Cambridge University Press, Cambridge

    Google Scholar 

  230. Linde A. (1986). “Eternally existing selfreproducing chaotic inflationary universe”. Phys. Lett. B 175:395

    Article  ADS  Google Scholar 

  231. Linde A. and Mezhlumian A. (1994). “From the big bang theory to the theory of a stationary universe”. Phys. Rev. D 49:1783 gr-qc/9306035

    Article  ADS  Google Scholar 

  232. Linde A.D. (1986). “Eternal chaotic inflation”. Mod. Phys. Lett. A 1:81

    Article  ADS  Google Scholar 

  233. Coleman S. (1988). “Black holes and red herrings: Topological fluctuations and the loss of quantum coherence”. Nucl. Phys. B 307:867

    Article  ADS  Google Scholar 

  234. Linde A. (1990). Particle Physics and Inflationary Cosmology. Harwood Academic Publishers, Chur, Switzerland

    Google Scholar 

  235. Garcia-Bellido J. and Linde A. (1995). “Stationarity from inflation and predictions from quantum cosmology”. Phys. Rev. D 51:429 hep-th/9408023

    Article  ADS  MathSciNet  Google Scholar 

  236. L. Susskind, “The anthropic landscape of string theory,” hep-th/0302219.

  237. L. Susskind, “Supersymmetry breaking in the anthropic landscape,” hep-th/0405189.

  238. Kachru S., Kallosh R., Linde A., and Trivedi S.P. (2003). “De Sitter vacua in string theory”. Phys. Rev. D 68:046005 hep-th/0301240

    Article  ADS  MathSciNet  Google Scholar 

  239. Denef F. and Douglas M.R. (2004).“Distributions of flux vacua”. JHEP 05:072 hep-th/0404116

    Article  ADS  MathSciNet  Google Scholar 

  240. Freivogel B. and Susskind L. (2004). “A framework for the landscape”. Phys. Rev. D 70:126007 hep-th/0408133

    Article  ADS  MathSciNet  Google Scholar 

  241. A. Vilenkin, “Anthropic predictions: The case of the cosmological constant,” astro-ph/0407586.

  242. Martel H., Shapiro P.R., and Weinberg S. (1998). “Likely values of the cosmological constant”. Astrophys. J. 492:29 astro-ph/9701099

    Article  ADS  Google Scholar 

  243. Garriga J. and Vilenkin A. (2000). “On likely values of the cosmological constant”. Phys. Rev. D 61:083502 astro-ph/9908115

    Article  ADS  Google Scholar 

  244. Gunn J.E., Gott I., and Richard J. (1972). “On the infall of matter into cluster of galaxies and some effects on their evolution”. Astrophys. J. 176:1–19

    Article  ADS  Google Scholar 

  245. S. Weinberg, “Living in the multiverse,” hep-th/0511037.

  246. Banks T., Dine M., and Gorbatov E. (2004). “Is there a string theory landscape?”. JHEP 08:058 hep-th/0309170

    Article  ADS  MathSciNet  Google Scholar 

  247. Graesser M.L., Hsu S.D.H., Jenkins A., and Wise M.B. (2004). “Anthropic distribution for cosmological constant and primordial density perturbations”. Phys. Lett. B 600:15–21 hep-th/0407174

    Article  ADS  Google Scholar 

  248. J. Garriga and A. Vilenkin, “Anthropic prediction for Lambda and the Q catastrophe,” hep-th/0508005.

  249. B. Feldstein, L. J. Hall, and T. Watari, “Density perturbations and the cosmological constant from inflationary landscapes,” hep-th/0506235.

  250. Vilenkin A. (1983). “Quantum fluctuations in the new inflationary universe”. Nucl. Phys. B 226:527

    Article  ADS  Google Scholar 

  251. Linde A.D., Linde D.A., and Mezhlumian A. (1994). “From the big bang theory to the theory of a stationary universe”. Phys. Rev. D 49:1783–1826 gr-qc/9306035

    Article  Google Scholar 

  252. Linde A.D., Linde D., and Mezhlumian A. (1995). “Do we live in the center of the world?”. Phys. Lett. B 345:203–210 hep-th/9411111

    Article  ADS  Google Scholar 

  253. Linde A.D. and Mezhlumian A. (1996). “On regularization scheme dependence of predictions in inflationary cosmology”. Phys. Rev. D 53:4267–4274 gr-qc/9511058

    Article  ADS  Google Scholar 

  254. J. Garriga, D. Schwartz-Perlov, A. Vilenkin, and S. Winitzki, “Probabilities in the inflationary multiverse,” hep-th/0509184.

  255. Douglas M.R. (2003). “The statistics of string/M theory vacua”. JHEP 05:046 hep-th/0303194

    Article  ADS  Google Scholar 

  256. Ashok S. and Douglas M.R. (2004). “Counting flux vacua”. JHEP 01:060 hep-th/0307049

    Article  ADS  MathSciNet  Google Scholar 

  257. Garriga J. and Vilenkin A. (2001). “Solutions to the cosmological constant problems”. Phys. Rev. D 64:023517 hep-th/0011262

    Article  ADS  Google Scholar 

  258. L. Smolin, “Scientific alternatives to the anthropic principle,” hep-th/0407213.

  259. Aguirre A. (2001). “The cold big-bang cosmology as a counter-example to several anthropic arguments”. Phys. Rev. D 64:083508 astro-ph/0106143

    Article  ADS  Google Scholar 

  260. A. Aguirre, “On making predictions in a multiverse: Conundrums, dangers, and coincidences,” astro-ph/0506519.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Nobbenhuis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobbenhuis, S. Categorizing Different Approaches to the Cosmological Constant Problem. Found Phys 36, 613–680 (2006). https://doi.org/10.1007/s10701-005-9042-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9042-8

Keywords

Navigation