Skip to main content
Log in

A Mathematical Characterization of Quantum Gaussian Stochastic Evolution Schemes

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We give a common mathematical characterization of relevant stochastic evolution schemes built up in the literatute to attack the quantum measurement problem. This characterization is based on two hypotheses, namely, (i) the trace conservation with probability one and (ii) the existence of a complex phase determining a linear support for the stochastic process driving the random evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. d’Espagnat B. (1976). Conceptual Foundations of Quantum Mechanics, 2nd comp. rev. and enl. edn. Addison-Wesley, New York

    Google Scholar 

  2. Santos E. (1991). “Does quantum mechanics violate the Bell inequalities”. Phys. Rev. Lett. 66: 1388

    Article  ADS  Google Scholar 

  3. Wheeler J.A., Zurek W.H. ed. (1983). Quantum Theory and Measurement. Princeton University Press, Princeton

    Google Scholar 

  4. Cini M., Lévy-Leblond J.-M. ed. (1990). Quantum Theory without Reduction. Adam Hilger, New York

    Google Scholar 

  5. Peres A. (1993). Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  6. Bub J. (1999). Interpreting the Quantum World. Cambridge University Press, Cambridge

    Google Scholar 

  7. de la Peña L., Cetto A.M. (1996). The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer Academic, Dordrecht

    Google Scholar 

  8. Gisin N. (1984). “Quantum measurements and stochastic processes”. Phys. Rev. Lett. 52: 1657

    Article  ADS  MathSciNet  Google Scholar 

  9. Ghirardi G.C., Rimini A., Weber T. (1986). “Unified dynamics for microscopic and macroscopic systems”. Phys. Rev. D 34, 470

    Article  ADS  MathSciNet  Google Scholar 

  10. Pearle P. (1989). “Combining stochastic dynamical state-vector reduction with spontaneous localization”. Phys. Rev. A 39: 2277

    Article  ADS  Google Scholar 

  11. Ghirardi G.C., Pearle P., Rimini A. (1990). “Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles”. Phys. Rev. A 42, 78

    Article  ADS  MathSciNet  Google Scholar 

  12. Diosi L. (1989). “Models for universal reduction of macroscopic quantum fluctuations”. Phys. Rev. A 40: 1165

    Article  ADS  Google Scholar 

  13. Gisin N., Percival I.C. (1992). “The quantum state diffusion model applied to open quantum systems”. J. Phys. A: Math. Gen. 25: 5677

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Pearle P. “Collapse models,” in Open Systems and Measurement in Relativistic Quantum Theory, F. Petruccione and H.P. Breuer, eds. (Springer, Berlin, 2000).

  15. Percival I.C. (1998). Quantum State Diffusion. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Bassi A., Ghirardi G.-C. (2003). “Dynamical reduction models”. Phys. Rep. 379: 257

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dalibard J., Castin Y., Molmer K. (1992). “Wave-function approach to dissipative processes in quantum optics”. Phys. Rev. Lett. 68, 580

    Article  ADS  Google Scholar 

  18. Gardiner C.W., Parkins A.S., Zoller P. (1992). “Wave-function quantum stochastic differential equations and quantum-jump simulation methods”. Phys. Rev. A 46: 4363

    Article  ADS  MathSciNet  Google Scholar 

  19. Dum R., Parkins A.S., Zoller P., Gardiner C.W. (1992). “Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs”. Phys. Rev. A 46: 4382

    Article  ADS  Google Scholar 

  20. Adler S.L., Brody D.C., Brun T.A., Hughston L.P. (2001). “Martingale models for quantum state reduction”. J. Phys. A 34: 8795

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dirac P.A.M. (1958). The Principles of Quantum Mechanics, 4th rev. edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  22. Øksendal B. (1998). Stochastic Differential Equations, 5th edn. Springer, Berlin

    Google Scholar 

  23. Hudson R.L., Parthasarathy K.R. (1984). “Quantum Ito’s formula and stochastic evolutions”. Commun. Math. Phys. 93: 301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Belavkin V.P. (1989). “A continuous counting observation and posterior quantum dynamics”. J. Phys. A: Math. Gen. 22: L1109

    Article  ADS  MathSciNet  Google Scholar 

  25. Parthasarathy K.R. (1992). An Introduction to Quantum Stochastic Calculus. Birkhäuser, Berlin

    MATH  Google Scholar 

  26. G. W. Johnson and G. Kallianpur, “Stochastic Dyson series and the solution to associated stochastic evolution equations,” in Stochastic Analysis and Mathematical Physics, R. Rebolledo, ed., Proceedings of the 2nd Intl. Workshop (World Scientific, Singapore, 1996), p. 82.

  27. Karatzas I., Shrève S.E. (1991). Brownian Motion and Stochastic Calculus, Graduate Text in Mathematics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  28. Bassi A., Ghirardi G.-C. (2002). “Dynamical reduction models with general gaussian noises”. Phys. Rev. A 65: 042114

    Article  ADS  Google Scholar 

  29. Gardiner C.W. (1995). Handbook of Stochastic Methods. Springer, Berlin

    Google Scholar 

  30. Lindblad G. (1976). “On the generators of quantum dynamical semigroups”. Commun. Math. Phys. 48: 119

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Alicki R., Lendi K. (1987). Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics 286 Springer, Berlin

    Book  MATH  Google Scholar 

  32. Diosi L., Wiseman H.M. (2001). “Complete parameterization and invariance of diffusive quantum trajectories for Markovian open systems”. J. Chem. Phys. 268: 91

    Article  Google Scholar 

  33. Gisin N. (1989). “Stochastic quantum dynamics and relativity”. Helv. Phys. Acta 62: 363

    MathSciNet  Google Scholar 

  34. Hughston L.P. (1996). “Geometry of stochastic state vector reduction”. Proc. R. Soc. Lond. A 452: 953

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Adler S.L., Horwitz L.P. (2000). “Structure and properties of Hughston’s stochastic extension of the Schrödinger equation”. J. Math. Phys. 41: 2485

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gisin N. (1981). “A simple nonlinear dissipative quantum evolution equation”. J. Phys. A: Math. Gen. 14: 2259

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Salgado.

Additional information

This paper is dedicated to Prof. Emilio Santos on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, D., Sánchez-Gómez, J.L. & Ferrero, M. A Mathematical Characterization of Quantum Gaussian Stochastic Evolution Schemes. Found Phys 36, 526–540 (2006). https://doi.org/10.1007/s10701-005-9034-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9034-8

Keywords

Navigation