Skip to main content
Log in

Physics and the Real World

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Physics and chemistry underlie the nature of all the world around us, including human brains. Consequently some suggest that in causal terms, physics is all there is. However, we live in an environment dominated by objects embodying the outcomes of intentional design (buildings, computers, teaspoons). The present day subject of physics has nothing to say about the intentionality resulting in existence of such objects, even though this intentionality is clearly causally effective. This paper examines the claim that the underlying physics uniquely causally determines what happens, even though we cannot predict the outcome. It suggests that what occurs is the contextual emergence of complexity: the higher levels in the hierarchy of complexity have autonomous causal powers, functionally independent of lower level processes. This is possible because top-down causation takes place as well as bottom-up action, with higher level contexts determining the outcome of lower level functioning and even modifying the nature of lower level constituents. Stored information plays a key role, resulting in non-linear dynamics that is non-local in space and time. Brain functioning is causally affected by abstractions such as the value of money and the theory of the laser. These are realised as brain states in individuals, but are not equivalent to them. Consequently physics per se cannot causally determine the outcome of human creativity, rather it creates the possibility space allowing human intelligence to function autonomously. The challenge to physics is to develop a realistic description of causality in truly complex hierarchical structures, with top-down causation and memory effects allowing autonomous higher levels of order to emerge with genuine causal powers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackoff R. (1999). Ackoff’s Best: His Classic Writings in Management. Wiley and Sons, New York

    Google Scholar 

  2. P. W. Anderson, “More is different”, Science 177, 393 (1972); Reprinted in P. W. Anderson, A Career in Theoretical Physics (World Scientific, Singapore, 1994).

  3. P. W. Anderson, “Is complexity physics? Is it science? What is it?”, Phys. Today. July 9 (1991).

  4. Anderson P.W. (2005). “Emerging physics: a fresh approach to viewing the complexity of the universe”. Nature 434, 701

    Article  ADS  Google Scholar 

  5. P. Ao, “Laws in Darwinian evolutionary theory”, To appear, Phys. Life Rev. (2005).

  6. Ashby R. (1958). An Introduction to Cybernetics. Chapman and Hall, London

    Google Scholar 

  7. Bai-Lin H. (1984). Chaos. World Scientific, Singapore

    MATH  Google Scholar 

  8. Beer S. (1966). Decision and Control. Wiley, New York

    Google Scholar 

  9. Beer S. (1972). Brain of the Firm. Wiley, New York

    Google Scholar 

  10. J. Berg and M. Lassig, “Local graph alignment and motif search in biological networks”, http://lanl.arXiv.org/abs/cond-mat/0308251 (2004).

  11. Berger P.L. (1963). Invitation to Sociology: A Humanistic Perspective. Doubleday, New York

    Google Scholar 

  12. Berger P., Luckmann T. (1967). The Social Construction of Reality: A Treatise in the Sociology of Knowledge. Anchor, New York

    Google Scholar 

  13. R. C. Bishop, “Patching physics and chemistry together”, To appear, Phil. Sci.(2005). “Downward causation in fluid convection”. Unpublished (2005). “The hidden premise in the causal argument for physicalism”. Unpublished (2005).

  14. R. C. Bishop and F. K. Kronz, “Is Chaos indeterministic?” in Language, Quantum, Music: Selected Contributed Papers of the Tenth International Congress of Logic, Methodology & Philosophy of Science, Florence, August, 1995, M. L. Dalla Chiara, R. Guintini and F. Laudisa, eds. (Kluwer Academic, Amsterdam, 1999), pp. 129–141.

  15. Booch G. (1994). Object Oriented Analysis and design with Applications. Addison Wesley, New York

    Google Scholar 

  16. Boshoff A. et al. (2004). “Molecular chaperones in biology, medicine and protein biotechnology”. South Afr. J. Sci. 100, 665

    Google Scholar 

  17. Burnet F.M. (1959). The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge

    Google Scholar 

  18. D. T. Campbell, “Downward causation”, in Studies in the Philosophy of Biology: Reduction and Related Problems, F. J. Ayala and T. Dobhzansky, eds. (University of California Press, Berkeley, 1974).

  19. Campbell N.A. (1991). Biology. Benjamin Cummings, New York

    Google Scholar 

  20. Chalmers D. (1997). The Conscious Mind. Oxford University Press, Oxford

    Google Scholar 

  21. Churchman C.W. (1968). The Systems Approach. Delacorte Press, New York

    Google Scholar 

  22. Connor C.E. (2005). “Friends and grandmothers”. Nature 435: 1036

    Article  PubMed  ADS  Google Scholar 

  23. Conway Morris S. (2003). Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge

    Google Scholar 

  24. L. F. Costa, “Hierarchical characterisation of complex networks”, http://lanl.arXiv.org/ abs/cond-mat/0412761 (2005).

  25. Davies P.C.W. (1974). The Physics of Time Asymmetry. Surrey University Press, London

    Google Scholar 

  26. Deacon T. (1997). The Symbolic Species: The Co-Evolution of Language and the Human Brain. Penguin, London

    Google Scholar 

  27. Dirac P.A.M. (1929). “Quantum mechanics of many electron systems”. Proc. R. Soc. A123, 714

    Article  ADS  Google Scholar 

  28. Dobson C.M. (2004). “Principles of protein folding, misfolding, and aggregation”. Semi. Cell Dev. Biol. 15, 3

    Article  Google Scholar 

  29. Dodelson S. (2003). Modern Cosmology. Academic Press, New York

    Google Scholar 

  30. Donald M. (2001). A. Mind so Rare: The Evolution of Human Consciousness. W. W. Norton, New York

    Google Scholar 

  31. Earley J.E. ed. (2003). Chemical Explanation: Characteristics, Development, Autonomy. New York Academy of Sciences, New York

    Google Scholar 

  32. Ellis G.F.R. (2002). “Cosmology and local physics”. New Astron. Revi. 46, 645

    Article  ADS  Google Scholar 

  33. Ellis G.F.R. “True complexity and its associated ontology”, in Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity, J. D. Barrow, P. C. W. Davies and C. L. Harper, eds. (Cambridge University Press, Cambridge, 2004).

  34. G. F. R. Ellis, “On the nature of emergent reality”, in The Re-emergence of Emergence, P. Clayton and P. C. W. Davies eds. (Oxford University Press, Oxford, 2005); http://www.mth.uct.ac.za/∼ellis/emerge.doc.

  35. Ellis G.F.R. (2005). “Physics, complexity, and causality”. Nature 435, 743

    Article  PubMed  ADS  Google Scholar 

  36. Ellis G.F.R. (2005). “Physics and the real world”. Phys. Today July, 49

    Article  Google Scholar 

  37. G. F. R. Ellis and D. W. Sciama, “Global and non-global problems in cosmology”, in General Relativity, L. O’Raifeartaigh, ed. (Oxford University Press, Oxford, 1972), p. 35.

  38. G. F. R. Ellis and J. Toronchuk, “Affective neural darwinism”, in Consciousness and Emotion: Agency, Conscious Choice, and Selective Perception, R. D. Ellis and N. Newton, eds. (John Benjamins, 2005), p. 81.

  39. P. Fernandez and R. V. Sole, “The role of computation in complex regulatory networks”, http://lanl.arXiv.org/abs/q-bio.MN/03110102 (2003).

  40. Flood R.L., Carson E.R. (1990). Dealing with Complexity: An Introduction to the Theory and Application of Systems Science. Plenum Press, London

    Google Scholar 

  41. Gilbert S.F. (1991). Developmental Biology. Sinauer, Sunderland, MA

    Google Scholar 

  42. Glimcher P.W. (2005). “Indeterminacy in brain and behaviour”. Ann. Rev. Psychol. 56, 25

    Article  Google Scholar 

  43. Greene B. (2003). The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. W.W. Norton, New York

    Google Scholar 

  44. S. H. Hansen, B. Moore, M. Zemp, and J. Stafel, “A universal velocity distribution of relaxed collisionless structures”, http://lanl.arXiv.org/abs/Astro-ph/0505420 (2005).

  45. J. B. Hartle, “Theories of everything and Hawking’s wave function of the universe”, in The Future of Theoretical Physics and Cosmology:Celebrating Stephen Hawking’s 60th Birthday, G. W. Gibbons, E. P. S. Shellard and S. J. Rankin, eds. (Cambridge University Press, Cambridge, 2003).

  46. J. B. Hartle, “The physics of now”, http://labl.arXiv.org/abs/gr-qc/0403001 (2004).

  47. Hartmann S. (2001). “Effective field theories, reductionism, and scientific explanation”. Stud. Hist. Phil. Mod. Phys. 32, 267

    Article  MathSciNet  Google Scholar 

  48. Hawking S.W., Ellis G.F.R. (1973). The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  49. Hogan C. (2000). “Why the universe is just so”. Rev. Mod. Phys. 72: 1149

    Article  ADS  Google Scholar 

  50. Isham C.J. (1997). Lectures on Quantum Theory: Mathematical and Structural Foundations. Imperial College Press, London

    Google Scholar 

  51. S. Itkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itkovitz, and U. Alon, “Coarse graining and self-dissimilarity of complex networks”, http://lanl.arXiv.org/abs/q-bio.MN/ 0405011 (2004).

  52. K. Jain and J. Krug, “Evolutionary trajectories in rugged fitness landscapes”, http://lanl.arXiv.org/abs/q-bio.PE/0501028 (2005).

  53. E. Joos, “Elements of environmental decoherence”, http://lanl.arXiv.org/abs/quant-ph/9908008 (1998).

  54. Kane R. (1996). The Significance of Free Will. Oxford University Press, Oxford

    Google Scholar 

  55. N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Network motifs in biological networks: roles and generalizations”, http://lanl.arXiv.org/abs/q-bio.MN/0312019 (2003).

  56. Keller E.F. (2000). The Century of the Gene. Harvard University Press, Cambridge

    Google Scholar 

  57. K. Klemm and S. Bornholdt, “Topology of biological networks and reliability of information prcessing”, http://lanl.arXiv.org/abs/q-bio.MN/0409022 (2004).

  58. Kolb E.W., Turner M.S. (1990). The Early Universe. Addison Wesley, Redwood City

    MATH  Google Scholar 

  59. Kuppers B.-O. (1990). Information and the Origin of Life. MIT Press, Cambridge

    Google Scholar 

  60. Kurakin A. (2005). “Self-organisation vs watchmaker: stochastic gene expression and cell differentiation”. Dev. Genes. Evol. xxx, 1

    Google Scholar 

  61. Laughlin R.B. (2000). “Fractional quantisation”. Rev. Mod. Phy. 71, 863

    Article  ADS  MathSciNet  Google Scholar 

  62. Laughlin R.B. (2005). A Different Universe: Re-Inventing Physics from the Bottom Down. Basic Books, New York

    Google Scholar 

  63. Lehn J.-M. (1995). Supramolecular Chemistry. VCH Verlag, Weinheim

    Google Scholar 

  64. Love N. (2005). “Cognition and the language myth”. Lang. Sci. 26, 525

    Article  ADS  Google Scholar 

  65. Luisi P.L. (2002). “Emergence in chemistry: chemistry as the embodiment of emergence”. Found. Chem. 4, 183

    Article  Google Scholar 

  66. Milsum J.H. (1966). Biological Control Systems Analysis. McGraw Hill, New York

    Google Scholar 

  67. Mitchell M. (1998). An Introduction to Genetic Algorithm. MIT Press, Cambridge

    Google Scholar 

  68. Morowitz H. (2002). The Emergence of Everything: How the World came to be Complex. Oxford University Press, Oxford

    Google Scholar 

  69. T. J. Newman, “Modelling multi-cellular systems using sub-cellular elements”, http://lanl.arXiv.org/abs/q-bio.QM/0504028 (2005).

  70. Ottersen O.P. (2005). “Sculpted by competition”. Nature 434, 969

    Article  PubMed  ADS  Google Scholar 

  71. Peacocke A.R. (1990). An Introduction to the Physical Chemistry of Biological Organization. Clarendon Press, Oxford

    Google Scholar 

  72. Penrose R. (1989). The Emperor’s New Mind. Oxford University Press, Oxford

    Google Scholar 

  73. Penrose R. (2004). The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London

    Google Scholar 

  74. Percival I. (1991). “Schrödinger’s quantum cat”. Nature 351, 357

    Article  PubMed  ADS  Google Scholar 

  75. Pink T. (2004). Free Will: A Very Short Introduction. Oxford University Press, Oxford

    Google Scholar 

  76. C. Quigg, “Natures greatest puzzles”, http://lanl.arXiv.org./abs/hep-ph/0502070 (2005).

  77. Quiroga R.Q., Reddy L., Kreiman G., Koch C., Gried I. (2005). “Invariant visual representation by a single neurons in the human brain”. Nature 435: 1102

    Article  PubMed  ADS  Google Scholar 

  78. Rees M.J. (2001). Just Six Numbers: The Deep Forces that Shape the Universe. Basic Books, New York

    Google Scholar 

  79. Rees M.J. (2001). Our Cosmic Habitat. Princeton University Press, Princeton

    Google Scholar 

  80. Richerson P.J., Boyd R. (2005). Not by Genes Alone: How Culture Transformed Human Evolution. University of Chicago Press, Chicago

    Google Scholar 

  81. Roberts E.B. (1981). Managerial Applications of Systems Dynamics. MIT Press, Cambridge

    Google Scholar 

  82. Roederer J. (2005). Information and its Role in Nature. Springer, Berlin

    MATH  Google Scholar 

  83. H. J. Schellnhuber, “Earth system analysis and the second copernican revolution”, Nature 6761 (supplement to vol 402), C19 (1999).

  84. Schrödinger E. (1967). What is Life? Mind and Matter. Cambridge University Press, Cambridge

    Google Scholar 

  85. Scott A. (1995). Stairway to the Mind. Springer-Verlag, Berlin

    Google Scholar 

  86. Silk J. (2001). The Big Bang. Freeman, New York

    Google Scholar 

  87. Simon H.A. “The architecture of complexity”. Proc. Am. Phil. Soc. 106, (1962).

  88. R. V. Sole and P. Fernandez, “Modularity ‘for free’ in genome architecture?” http://lanl.arXiv.org/abs/q-bio.GN/0312032 (2003).

  89. H. P. Stapp, “Quantum interactive dualism: an alternative to materialism”, To appear, J. Consc. Studies(2005).

  90. Sutherland W.J. (2005). “The best solution”. Nature 435, 569

    Article  PubMed  ADS  Google Scholar 

  91. Tannebaum A.S. (1990). Structured Computer Organisation. Prentice Hall, Englewood Cliffs

    Google Scholar 

  92. Thompson J.M.T., Stewart H.B. (1987). Nonlinear Dynamics and Chaos. John Wiley, New York

    Google Scholar 

  93. Thom R. (1989). Structural Stability and Morphogenesis. Addison Wesley, New York

    MATH  Google Scholar 

  94. Vogel S. (1998). Cats’ Paws and Catapults: Mechanical Worlds of Nature and People. Penguin Books, London

    Google Scholar 

  95. Wolpert L. (1998). Principles of Development. Oxford University Press, Oxford

    Google Scholar 

  96. Zeh H.D. (1992). The Physical Basis of the Direction of Time. Springer-Verlag, Berlin

    MATH  Google Scholar 

  97. W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical”, http://lanl.arXiv.org/abs/quant-ph/0105127 v3. “Quantum darwinism and envariance”. in Science and Ultimate Reality: Quantum theory, Cosmology, and Complexity, J. D. Barrow, P. C. W. Davies, and C. L. Harper, eds. (Cambridge University Press, Cambridge, 2003),

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. R. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, G.F.R. Physics and the Real World. Found Phys 36, 227–262 (2006). https://doi.org/10.1007/s10701-005-9016-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9016-x

Keywords

Navigation