Skip to main content
Log in

Quantum Measurements and Finite Geometry

  • Published:
Foundations of Physics Aims and scope Submit manuscript

A complete set of mutually unbiased bases for a Hilbert space of dimension N is analogous in some respects to a certain finite geometric structure, namely, an affine plane. Another kind of quantum measurement, known as a symmetric informationally complete positive-operator-valued measure, is, remarkably, also analogous to an affine plane, but with the roles of points and lines interchanged. In this paper I present these analogies and ask whether they shed any light on the existence or non-existence of such symmetric quantum measurements for a general quantum system with a finite-dimensional state space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wiesner (1983). Sigact News 15(1): 78

    Article  Google Scholar 

  2. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175–179.

  3. Bechmann-Pasquinucci H., Peres A. (2000). Phys. Rev. Lett. 85: 3313

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  4. Ivanovic I.D. (1981). J. Phys. A 14: 3241

    Article  ADS  MathSciNet  Google Scholar 

  5. Wootters W.K., Fields B.D. (1989). Ann. Phys. 191, 363

    Article  ADS  MathSciNet  Google Scholar 

  6. Calderbank A.R., Cameron P.J., Kantor W.M., Seidel J.J. (1997). Proc. London Math. Soc. 75, 436

    Article  MATH  MathSciNet  Google Scholar 

  7. Lawrence J., Brukner C., Zeilinger A. (2002). Phys. Rev. A 65, 032320

    Article  ADS  Google Scholar 

  8. Bandyopadhyay S., Boykin P.O., Roychowdhury V., Vatan F. (2002). Algorithmica 34, 512

    Article  MATH  MathSciNet  Google Scholar 

  9. Chaturvedi S. (2002). Phys. Rev. A 65, 044301

    Article  ADS  Google Scholar 

  10. Pittenger A.O., Rubin M.H. (2004). Linear Alg. Appl. 390, 255

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Zauner, Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie Dissertation, Universität Wien, 1999).

  12. A. Klappenecker and M. Rötteler, quant-ph/0309120.

  13. Delsarte P., Goethals J.M., Seidel J.J. (1975). Philips Res. Repts. 30, 91

    MATH  Google Scholar 

  14. Saniga M., Planat M., Rosu H. (2004). J. Opt. B: Quantum Semiclass. 6, L19

    Article  ADS  MathSciNet  Google Scholar 

  15. Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M. (2004). J. Math. Phys. 45, 2171

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Gibbons K.S., Hoffman M.J., Wootters W.K. (2004). Phys. Rev. A 70, 062101

    Article  MathSciNet  ADS  Google Scholar 

  17. van Lint J.H., Wilson R.M. (1992). A Course in Combinatorics Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Tarry G. (1900). C. R. Assoc. France Av. Sci. 29, 170

    Google Scholar 

  19. Bruck R.H., Ryser H.J. (1949). Can. J. Math. 1, 88

    MATH  MathSciNet  Google Scholar 

  20. Lam C.W.H. (1991). Am. Math. Monthly 98, 305

    Article  MATH  Google Scholar 

  21. C. Archer, quant-ph/0312204.

  22. I. Bengtsson, quant-ph/0406174.

  23. Peres A. (1995). Quantum Theory: Concepts and Methods Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  24. M. Grassl, quant-ph/0406175.

  25. Hoggar S.G. (1998). Geom. Dedic. 69, 287

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Koldobsky and H. König, Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss, eds. (North Holland, Dordrecht, 2001), p. 899.

  27. Appleby D. M., (2005). J. Math. Phys. 46, 052107

    Article  MathSciNet  ADS  Google Scholar 

  28. R. W. Spekkens, quant-ph/0401052.

  29. L. Hardy, quant-ph/9906123.

  30. Kochen S., Specker E. (1967). J. Math. Mech. 17, 59

    MATH  MathSciNet  Google Scholar 

  31. Peres A. (1991). J. Phys. A 24, L175

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. K. Wootters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wootters, W.K. Quantum Measurements and Finite Geometry. Found Phys 36, 112–126 (2006). https://doi.org/10.1007/s10701-005-9008-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9008-x

Keywords

PACS

Navigation