Skip to main content
Log in

Compatibility of Subsystem States

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We examine the possible states of subsystems of a system of bits or qubits. In the classical case (bits), this means the possible marginal distributions of a probability distribution on a finite number of binary variables; we give necessary and sufficient conditions for a set of probability distributions on all proper subsets of the variables to be the marginals of a single distribution on the full set. In the quantum case (qubits), we consider mixed states of subsets of a set of qubits; in the case of three qubits we find quantum Bell inequalities—necessary conditions for a set of two-qubit states to be the reduced states of a mixed state of three qubits. We conjecture that these conditions are also sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wigner E.P. (1970). “On hidden variables and quantum mechanical probabilities”. Am. J. Phys. 38:1005

    Article  ADS  Google Scholar 

  2. Peres A. (1999). “All the Bell inequalities”. Found. Phys. 29:589 quant-ph/9807017

    Article  MathSciNet  Google Scholar 

  3. Hall W. (2005). “Multipartite reduction criteria”. Phys. Rev. A 72:022311

    Article  ADS  MathSciNet  Google Scholar 

  4. Boole G. Investigation of the Laws of Thought (1858) (Dover, New York, 1951).

  5. Pitowsky I. (1986). “The range of quantum probability”. J. Math. Phys. 27:1556

    Article  ADS  MathSciNet  Google Scholar 

  6. Pitowsky I. (1989). Quantum Probability – Quantum Logic. Springer, Berlin

    MATH  Google Scholar 

  7. Pitowsky I. (1991). “Correlation polytopes: their geometry and complexity”. Math. Program. 50:395

    Article  MathSciNet  MATH  Google Scholar 

  8. Kolmogorov A.N. (1950). Foundations of Probability Theory. Chelsea, London

    Google Scholar 

  9. Parthasarathy K.R. (2005). “Extremal quantum states in coupled systems”. Ann. Inst. H. Poincare – Prob. Stat. 41:257

    Article  MATH  Google Scholar 

  10. Rudolph O. (2004). “On extremal quantum states of composite systems with fixed marginals”. J. Math. Phys. 45:4035 quant-ph/0406021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Higuchi A., Sudbery A., and Szulc J. (2003). “One-qubit reduced states of a pure many-qubit state: polygon inequalities”. Phys. Rev. Lett. 90:107902 quant-ph/0209085

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  12. Higuchi A., “On the one-particle reduced density matrices of a pure three-qutrit quantum state,” J. Math. Phys. to appear. quant-ph/0309186

  13. Bravyi S. (2004). “Requirements for compatibility between local and multipartite quantum states”. Quantum Inf. Comp. 4:12 quant-ph/0301014

    MathSciNet  MATH  Google Scholar 

  14. Y.-Han J., Y.-Zhang S., and G.-C. Guo, “Compatibility relations between the reduced and global density matrices,” quant-ph/0403151

  15. Jones N.S., and Linden N. (2005). “Parts of quantum states”. Phys. Rev. A 71:012324 quant-ph/0407117

    Article  ADS  MathSciNet  Google Scholar 

  16. Diósi L. (2004). “Three-party pure quantum states are determined by two two-party reduced states”. Phys. Rev. A 70:10302 quant-ph/0403200

    Article  ADS  Google Scholar 

  17. Linden N., Popescu S., and Wootters W.K. (2002). “Almost every pure state of three qubits is completely determined by its two-particle reduced density matrices”. Phys. Rev. Lett. 89:207901 quant-ph/0207109

    Article  PubMed  ADS  Google Scholar 

  18. Coleman A.J., and Yukalov V.I. (2000). Reduced Density Matrices: Coulson’s Challenge. Springer, Berlin

    MATH  Google Scholar 

  19. Cerf N.J., Adami C., and Gingrich R.M. (1999). “Quantum conditional operator and a criterion for separability”. Phys. Rev. A 60:893 quant-ph/9710001

    Article  ADS  MathSciNet  Google Scholar 

  20. Horodecki M. and Horodecki P. (1999). “Reduction criterion of separability and limits for a class of protocols of entanglement distillation”. Phys. Rev. A 59:4206 quant-ph/9708015

    Article  ADS  MathSciNet  Google Scholar 

  21. Klyachko A., “Quantum marginal problem and representations of the symmetric group,” quant-ph/0409113

  22. Daftuar S. and Hayden P. (2005). “Quantum state transformations and the Schubert calculus”. Ann. Phys. 315:80

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Christandl M. and Mitchison G. (2006). “The spectra of density operators and the Kronecker coefficients of the symmetric group”. Commun. Math. Phys. 261:789

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Coleman A.J. (1963). “Structure of fermion density matrices”. Rev. Mod. Phys. 35:668

    Article  ADS  Google Scholar 

  25. Klyachko A., “Quantum marginal problem and N-representability” quant-ph/0511102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Butterley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butterley, P., Sudbery, A. & Szulc, J. Compatibility of Subsystem States. Found Phys 36, 83–101 (2006). https://doi.org/10.1007/s10701-005-9006-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9006-z

Keywords

Navigation