Skip to main content
Log in

Gauge Theory Gravity with Geometric Calculus

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A new gauge theory of gravity on flat spacetime has recently been developed by Lasenby, Doran, and Gull. Einstein’s principles of equivalence and general relativity are replaced by gauge principles asserting, respectively, local rotation and global displacement gauge invariance. A new unitary formulation of Einstein’s tensor illuminates long-standing problems with energy–momentum conservation in general relativity. Geometric calculus provides many simplifications and fresh insights in theoretical formulation and physical applications of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Poincaré (1951) Science and Hypothesis Dover New York

    Google Scholar 

  2. C. Doran A. Lasenby (2003) Geometric Algebra for Physicists Cambridge University Press Cambridge

    Google Scholar 

  3. A. Lasenby C. Doran S. Gull (1998) ArticleTitle“Gravity, gauge theories and geometric algebra” Phil. Trans. R. Lond. A 356 487–582

    Google Scholar 

  4. A. Grünbaum (1963) Philosophical Problems of Space and Time Knopf New York

    Google Scholar 

  5. R. Feynman (1995) Feynman Lectures on Gravitation Addison-Wesley Reading

    Google Scholar 

  6. D. Hestenes (2003) ArticleTitle“Oersted Medal Lecture 2002: Reforming the mathematical language of physics” Am. J. Phys. 71 104–121 Occurrence Handle10.1119/1.1522700

    Article  Google Scholar 

  7. D. Hestenes (2003) ArticleTitle“Spacetime physics with geometric algebra” Am. J. Phys. 71 691–704 Occurrence Handle10.1119/1.1571836

    Article  Google Scholar 

  8. D. Hestenes G. Sobczyk (1986) CLIFFORD ALGEBRA to GEOMETRIC CALCULUS, a Unified Language for Mathematics and Physics Kluwer Academic Dordrecht/Boston

    Google Scholar 

  9. Hestenes (1993) “Differential forms in geometric Calculus” F. Brackx R. Delanghe H. Serras (Eds) Clifford Algebras and their Applications in Mathematical Physics Kluwer Academic Dordrecht/Boston 269–285

    Google Scholar 

  10. R. d’Inverno (1992) Introducing Einstein’s Relativity Clarendon Press Oxford

    Google Scholar 

  11. F. Heyl P. Heyde Particlevon der D. Kerlick (1976) ArticleTitle“General relativity with spin and torsion: Foundations adn prospectus” Rev. Mod. Phys. 48 393–416 Occurrence Handle10.1103/RevModPhys.48.393

    Article  Google Scholar 

  12. C. Misner K. Thorne J. Wheeler (1973) Gravitation Freeman San Francisco

    Google Scholar 

  13. D. Hestenes (1991) ArticleTitle“The design of linear algebra and geometry” Acta Appl. Math. 23 65–93 Occurrence Handle10.1007/BF00046920

    Article  Google Scholar 

  14. C. Doran D. Hestenes F. Sommen N. Acker ParticleVan (1993) ArticleTitle“Lie groups as spin groups” J. Math. Phys. 34 3642–3669 Occurrence Handle10.1063/1.530050

    Article  Google Scholar 

  15. Of course, this use of the “overbar notation” is an abuse of our notation for linear operators, but as the operator h̄ is involved, it helps distinguish gauge covariant fields from fields that are not gauge covariant. Caligraphic font is used for the same purpose in Ref. 2.

  16. W. R. Davis (1966) ArticleTitle“The Role of tetrad and flat-metric fields in the framework of the general theory of relativity” Nuovo Cimento 43 2816–2820

    Google Scholar 

  17. J. Earman (1974) ArticleTitle“Covariance, invariance, and the equivalence of frames” Found. Phys. 4 267–289 Occurrence Handle10.1007/BF00712691

    Article  Google Scholar 

  18. S. Gull A. Lasenby C. Doran (1996) “Geometric algebra, spacetime physics and gravitation” O. Lahav E. Terlevich R. Terlevich (Eds) bnGravitational Dynamics Cambridge University Press Cambridge 171–180

    Google Scholar 

  19. P. Havas (1989) “The Early History of the ‘Problem of Motion’ in General Relativity” O. Lahav E. Terlevich R. Terlevich (Eds) Einstein and the History of General Relativity Birkhäuser Boston 234–276

    Google Scholar 

  20. D. Hestenes (1986) ArticleTitle“A spinor approach to gravitaional motion and precession” Int. J. Theo. Phys. 25 589–598 Occurrence Handle10.1007/BF00670473

    Article  Google Scholar 

  21. <www.mrao.cam.ac.uk>.

  22. R. Gautreau, “Light comes inside the Schwarzschild radius,” Am. J. Phys. 63, 431–439 (1995); “Comological Schwarzschild radii and Newtonian gravitational theory,” Am. J. Phys. 64, 1457–1467 (1996); R. Gautreau and J. Cohen, “Gravitational collapse in a single coordinates system,” Am. J. Phys. 63, 991–999 (1995); “Gravitational expansion and the destruction of a black hole,” Am. J. Phys. 65, 198–201 (1997).

    Google Scholar 

  23. E. Taylor J. Wheeler (2004) Exploring Black Holes: Introduction to General Relativity Addison Wesley Reading

    Google Scholar 

  24. D. Hestenes, New Foundations for Classical Mechanics (Kluwer, Dordrecht/Boston, 1986), 2nd edn. (1999).

  25. A. Einstein, “Hamilton’s Principle and the General Theory of Relativity”, in Sitzungsber. D. Preuss. Akad. D. Wiss., 1916. English translation in The Principle of Relativity (Dover, 1923).

  26. Page 46 in Ref.18.

  27. S. Babak L. Grishchuk (1999) ArticleTitle“Energy–momentum tensor for the gravitational field” Phys. Rev. D 61 1–18

    Google Scholar 

  28. D. Hestenes, “Energy–momentum Complex in General Relativity and Gauge Theory Gravity”, to be published. Available at the website: <http://modelingnts.la.asu.edu>.

  29. C. Doran A. Lasenby A. Challinor S. Gull (1988) ArticleTitle“Effects of spin-torsion in gauge theory gravity” J. Math. Phys. 39 3303–3321 Occurrence Handle10.1063/1.532255

    Article  Google Scholar 

  30. Chapter 9: “Foundations of Mechanics” in Ref.30. This chapter was replaced by a chapter on Relativity in the Second Edition. However, it is available at the website: <http://modelingnts.la.asu.edu>

  31. D. Hestenes (1992) ArticleTitle“Modeling Games in the Newtonian World” Am. J. Phys. 60 732–748

    Google Scholar 

  32. S. Hawking, and G. Ellis, The Large Scale Structure of Spacetime (Cambridge, 1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hestenes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hestenes, D. Gauge Theory Gravity with Geometric Calculus. Found Phys 35, 903–970 (2005). https://doi.org/10.1007/s10701-005-5828-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-5828-y

Keywords

Navigation