Skip to main content
Log in

Stevin Numbers and Reality

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We explore the potential of Simon Stevin’s numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis 77(1): 11–21

    Article  Google Scholar 

  • Arkeryd L. (2005) Nonstandard analysis. The American Mathematical Monthly 112(10): 926–928

    Article  Google Scholar 

  • Bair J., Henry V. (2010) Implicit differentiation with microscopes. The Mathematical Intelligencer 32(1): 53–55

    Article  Google Scholar 

  • Bell J. L. (2008) A primer of infinitesimal analysis (2nd Edn.). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bell, J. L. Continuity and infinitesimals. Stanford Encyclopedia of philosophy. Revised 20 july 2009.

  • Berkeley, G. (1734). The Analyst, a Discourse Addressed to an Infidel Mathematician. Tonson: London.

  • Błaszczyk, P. (2009). Nonstandard analysis from a philosophical point of view. In Non-Classical Mathematics 2009 (pp. 21–24). Hejnice, 18-22 june.

  • Boyer, C. (1949). The concepts of the calculus. Hafner Publishing Company.

  • Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for history of exact sciences 61(5): 519–535

    Article  Google Scholar 

  • Burgess J., Rosen G. (1997) A subject with no object. Strategies for nominalistic interpretation of mathematics. The Clarendon Press, Oxford University Press, New York

    Google Scholar 

  • Cauchy A. L. (1821) Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Imprimérie Royale, Paris

    Google Scholar 

  • Cauchy, A.-L. (1815). Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie (published 1827, with additional Notes). Oeuvres 1(1), 4–318.

    Google Scholar 

  • Cauchy A.-L. (1827) Mémoire sur les développements des fonctions en séries périodiques. Oeuvres 2(1): 12–19

    Google Scholar 

  • Cauchy, A. L. (1829). Leçons sur le calcul différentiel. Paris: Debures. In Oeuvres complètes, Series 2, Vol. 4, (pp. 263–609). Paris: Gauthier-Villars, 1899.

  • Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Series 1, Vol. 12, (pp. 30–36). Paris: Gauthier–Villars, 1900.

  • Chihara, C. (2007). The Burgess-Rosen critique of nominalistic reconstructions. Philosophia Mathematica 15(3), no.(1), 54–78.

    Google Scholar 

  • Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378

    Article  Google Scholar 

  • Dauben J. (1977) C. S. Peirce’s philosophy of infinite sets. A study of Peirce’s interest in the infinite related to the birth of American mathematics and contemporary work of Cantor and Dedekind. Mathematics Magazine 50(3): 123–135

    Article  Google Scholar 

  • Dauben J. (1982) Peirce’s place in mathematics. Historia Mathematica 9(3): 311–325

    Article  Google Scholar 

  • Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Reprinted: Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html

  • Dossena R., Magnani L. (2007) Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI) 64: 193–213

    Article  Google Scholar 

  • Ehrlich P. (2006) The rise of non-archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for history of exact sciences 60(1): 1–121

    Article  Google Scholar 

  • Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146

    Google Scholar 

  • Eves, H., Newsom, C. (1958). An introduction to the foundations and fundamental concepts of mathematics. Rinehart and Company, Inc., New York. Revised edition, 1965.

  • Fearnley-Sander D. (1979) Hermann Grassmann and the creation of linear algebra. The American Mathematical Monthly 86(10): 809–817

    Article  Google Scholar 

  • Fowler D. H. (1992) Dedekind’s theorem: \({\sqrt2\times\sqrt3 = \sqrt6}\) . The American Mathematical Monthly 99(8): 725–733

    Article  Google Scholar 

  • Freudenthal, H. (1971) Cauchy, Augustin-Louis. In C. C. Gillispie (Ed.), Dictionary of Scientific Biography Vol. 3, pp. 131–148. New York: Charles Scribner’s sons.

    Google Scholar 

  • Gandz S. (1936) The invention of the decimal fractions and the application of the exponential calculus by Immanuel Bonfils of Tarascon (c. 1350). Isis 25: 16–45

    Article  Google Scholar 

  • Goldblatt R. (1998) Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics, 188. Springer, New York

    Google Scholar 

  • Havenel J. (2008) Peirce’s Clarifications of Continuity. Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy 44(1): 86–133

    Google Scholar 

  • Hawking, S. (Ed.) 2007. The mathematical breakthroughs that changed history. Philadelphia, PA: Running Press (originally published 2005).

  • Hellman G. (1989) Mathematics without numbers. Towards a modal-structural interpretation. The Clarendon Press, Oxford University Press, New York

    Google Scholar 

  • Hewitt E. (1948) Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society 64: 45–99

    Article  Google Scholar 

  • Hobson, E. W. (1994). On the infinite and the infinitesimal in mathematical analysis. Proceedings London Mathematical Society, Volume s1-35 (1902), Number 1, pp. 117–139 (reprinted in Real numbers, generalizations of the reals, and theories of continua, 3–26, Synthese Lib., 242, Kluwer Acad. Publ., Dordrecht).

  • Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1-.9. in a post-triumvirate era. Educational Studies in Mathematics 74(3):259–273. See arXiv:1003.1501.

    Google Scholar 

  • Katz K., Katz M. (2010b) When is .999...less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30

    Google Scholar 

  • Katz, K., & Katz, M. A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science. see http://www.springerlink.com/content/tj7j2810n8223p43/ and http://arxiv.org/abs/1104.0375.

  • Katz, K., & Katz, M. Cauchy’s continuum. Perspectives on Science (in press).

  • Katz, M., Tall, David: The tension between intuitive infinitesimals and formal mathematical analysis. In Bharath Sriraman (Ed.), Crossroads in the History of Mathematics and Mathematics Education (2011, to appear).

  • Keisler, H. Jerome Elementary Calculus: An Infinitesimal Approach. (2nd ed.). Prindle, Weber & Schimidt, Boston, 1986.

  • Keisler, H. Jerome (1994). The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, 207–237, Synthese Lib., 242. Dordrecht: Kluwer Academic Publisher.

  • Klein, F. (1932). Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York] from the third German edition [Springer, Berlin, 1924] (originally published in 1908).

  • Lakoff G., Núñez R. (2000) Where mathematics comes from. How the embodied mind brings mathematics into being. Basic Books, New York

    Google Scholar 

  • Laugwitz D. (1987) Infinitely small quantities in Cauchy’s textbooks. Historia mathematica 14(3): 258–274

    Article  Google Scholar 

  • Laugwitz D. (1989) Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820. Archive for history of exact sciences 39(3): 195–245

    Article  Google Scholar 

  • Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des sciences 45(1): 115–128

    Article  Google Scholar 

  • Laugwitz D. (2000) Comments on the paper: “Two letters by N. N. Luzin to M. Ya. Vygodskiĭ”. The American Mathematical Monthly 107(3): 267–276

    Article  Google Scholar 

  • Lightstone A. H. (1972) Infinitesimals. The American Mathematical Monthly 79: 242–251

    Article  Google Scholar 

  • Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.

  • Magnani L., Dossena R. (2005) Perceiving the infinite and the infinitesimal world: unveiling and optical diagrams in mathematics. Foundations of science 10(1): 7–23

    Article  Google Scholar 

  • Malet A. (2006) Renaissance notions of number and magnitude. Historia mathematica 33(1): 63–81

    Article  Google Scholar 

  • Moore M. (2002) Archimedean intuitions. Theoria (Stockholm) 68(3): 185–204

    Google Scholar 

  • Moore M. (2007) The Completeness of the Real Line. Crí tica: Revista Hispanoamericana de Filosofí a 39(117): 61–86

    Google Scholar 

  • Peirce C.S. (1878) How to make our ideas clear. Popular Science Monthly 12: 286–302

    Google Scholar 

  • Peirce C.S. (1897) Three Grades of Clearness. In “The Logic of Relatives” in The Monist 7: 161–217

    Google Scholar 

  • Robinson A. (1966) Non-standard analysis. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  • Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199

    Article  Google Scholar 

  • Schubring G. (2005) Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th Century France and Germany. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York

    Google Scholar 

  • Sherry D. (1987) The wake of Berkeley’s Analyst: rigor mathematicae?. Studies in History and Philosophy of Science 18(4): 455–480

    Article  Google Scholar 

  • Sinaceur H. (1973) Cauchy et Bolzano. Revue d’Histoire des Sciences et de leurs Applications 26(2): 97–112

    Article  Google Scholar 

  • Skolem Th. (1934) Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23: 150–161

    Google Scholar 

  • Stevin, S. (1585). L’Arithmetique. In A. Girard (Ed.), Les Oeuvres Mathematiques de Simon Stevin (Leyde, 1634), part I, p. 1–101.

  • Stevin, S. (1958). The principal works of Simon Stevin. Vols. IIA, IIB: Mathematics. Edited by D. J. Struik C. V. Swets & Zeitlinger, Amsterdam. Vol. IIA: v+pp. 1–455 (1 plate). Vol. IIB: 1958 iv+pp. 459–976.

  • Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970). Studies in Logic and Foundations of Math., Vol. 69 (pp. 47–64). Amsterdam: North-Holland.

  • Tall D. (1980) Looking at graphs through infinitesimal microscopes, windows and telescopes. The Mathematical Gazette 64: 22–49

    Article  Google Scholar 

  • Tall D. (2008) The transition to formal thinking in mathematics. Mathematics Education Research Journal 20(2): 5–24

    Article  Google Scholar 

  • Tarski A. (1930) Une contribution à la théorie de la mesure. Fundamenta Mathematicae 15: 42–50

    Google Scholar 

  • van der Waerden B. L. (1985) A history of algebra. From al-Khwarizmi to Emmy Noether. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, K.U., Katz, M.G. Stevin Numbers and Reality. Found Sci 17, 109–123 (2012). https://doi.org/10.1007/s10699-011-9228-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-011-9228-9

Keywords

Navigation