Skip to main content
Log in

A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography

Foundations of Science Aims and scope Submit manuscript

Abstract

We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alexander A. (2001) Exploration mathematics: the rhetoric of discovery and the rise of infinitesimal methods. Configurations 9(1): 1–36

    Article  Google Scholar 

  • Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archievs of Rational Mechanical Analysis 77(1): 11–21

    Article  Google Scholar 

  • Arkeryd L. (2005) Nonstandard analysis. American Mathematics Monthly 112(10): 926–928

    Article  Google Scholar 

  • Avigad J. (2007) Response to questionnaire. In: Hendricks Vincent F., Leitgeb H. (eds) Philosophy of mathematics: 5 Questions. Automatic/VIP Press, New York

    Google Scholar 

  • Barner, K. Fermats “adaequare”—und kein Ende? Mathematische Semesterberichte. http://www.springerlink.com/content/5r32u25207611m37/.

  • Barrow I. (1860) The mathematical works, vol. 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Beeson, M. (1985). Foundations of constructive mathematics. Metamathematical studies. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 6. Berlin: Springer.

  • Bell J. (2008) A primer of infinitesimal analysis, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bell, J. (2009). Continuity and infinitesimals. Stanford Encyclopedia of philosophy. Revised 20 july ’09.

  • Berkeley, G. (1734). The Analyst, a Discourse Addressed to an Infidel Mathematician.

  • Billinge H. (2000) Applied constructive mathematics: On G. Hellman’s “Mathematical constructivism in spacetime. British Journal of Philosophical Science 51(2): 299–318

    Article  Google Scholar 

  • Billinge H. (2003) Did Bishop have a philosophy of mathematics?. Philosophy in Mathematics (3) 11(2): 176–194

    Google Scholar 

  • Bishop E. (1967) Foundations of constructive analysis. McGraw-Hill Book Co, New York

    Google Scholar 

  • Bishop, E., & Bridges, D. (1985). Constructive analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 279. Berlin: Springer.

  • Bishop, E. (1968). Mathematics as a numerical language. 1970 Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968) pp. 53–71. Amsterdam: North-Holland.

  • Bishop, E. (1974). The crisis in contemporary mathematics. Proceedings of the American Academy Workshop on the Evolution of Modern Mathematics (Boston, Mass., 1974). Historia Mathematics 2 (’75), no. 4, 507–517.

  • Bishop, E. (1985). Schizophrenia in contemporary mathematics [published posthumously; originally distributed in 1973]. In Errett Bishop: Reflections on him and his research (San Diego, Calif., 1983), pp. 1–32, Contemporary Mathematics 39, Am. Math. Soc., Providence, RI.

  • Błaszczyk, P. (2009). Nonstandard analysis from a philosophical point of view. In Non-Classical Mathematics 2009 (Hejnice, 18–22 june 2009), pp. 21–24.

  • Boniface, J., & Schappacher, N. (2001). “Sur le concept de nombre en mathématique”: Cours inédit de Leopold Kronecker à Berlin (1891). [“On the concept of number in mathematics”: Leopold Kronecker’s 1891 Berlin lectures] Review in Histoire Mathematics 7(2), 206–275.

  • Boyer C. (1949) The concepts of the calculus. Hafner Publishing Company, New York

    Google Scholar 

  • Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535

    Article  Google Scholar 

  • Breger H. (1994) The mysteries of adaequare: A vindication of Fermat. Archive for History of Exact Sciences 46(3): 193–219

    Article  Google Scholar 

  • Bridges, D. (1994). A constructive look at the real number line. In Real numbers, generalizations of the reals, and theories of continua, pp. 29–92, see item [45].

  • Bridges D. (1999) Can constructive mathematics be applied in physics?. Journal of Philosophical Logic 28(5): 439–453

    Article  Google Scholar 

  • Burgess J. (1983) Why I am not a nominalist. Notre Dame Journal of Formal Logic 24(1): 93–105

    Article  Google Scholar 

  • Burgess J. (2004) Mathematics and Bleak House. Philosophia Mathematica (3) 12: 18–36

    Article  Google Scholar 

  • Burgess J., Rosen G. (1997) A subject with no object. Strategies for nominalistic interpretation of mathematics. The Clarendon Press Oxford University Press, New York

    Google Scholar 

  • Cauchy A.L. (1821) Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Imprimérie Royale, Paris

    Google Scholar 

  • Cauchy, A. L. (1823). Résumé des Leçons données à l’Ecole Royale Polytechnique sur le Calcul Infinitésimal (Paris: Imprimérie Royale, 1823). In Oeuvres complètes, Ser. 2, vol. 4, pp. 9–261. Paris: Gauthier-Villars.

  • Cauchy, A. L. (1829). Leçons sur le calcul différentiel. In Oeuvres complètes, Ser. 2, vol. 4, pp. 263–609. Paris: Gauthier-Villars, 1899.

  • Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Ser. 1, vol. 12, pp. 30–36. Paris: Gauthier–Villars, 1900

  • Corry, L. (2006). Axiomatics, empiricism, and Anschauung in Hilbert’s conception of geometry: Between arithmetic and general relativity. The architecture of modern mathematics, pp. 133–156. Oxford: Oxford University Press.

  • Cousquer E. (1998) La fabuleuse histoire des nombres. Diderot, Paris

    Google Scholar 

  • Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. British Journal for the Philosophy of Science 39(3): 375–378

    Article  Google Scholar 

  • d’Alembert, J. (1754). Différentiel. Entry in Encyclopédie ou Dictionnaire Raisonné des Sciences, des Arts et des Métiers, vol. 4.

  • Dauben, J. (1992). Conceptual revolutions and the history of mathematics: two studies in the growth of knowledge (1984). In Revolutions in mathematics, pp. 49–71, Oxford Science Publishers. New York: Oxford University Press.

  • Dauben, J. (1995). Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton, NJ: Princeton University Press.

  • Dauben, J. (1996). Arguments, logic and proof: mathematics, logic and the infinite. History of mathematics and education: Ideas and experiences (Essen, 1992), pp. 113–148, Stud. Wiss. Soz. Bildungsgesch. Math., 11, Vandenhoeck & Ruprecht, Göttingen.

  • Davies E. B. (2005) A defence of mathematical pluralism. Philosophy in Mathematics (3) 13(3): 252–276

    Article  Google Scholar 

  • Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. New York: Wiley-Interscience. Reprinted: Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html.

  • Davis P., Hersh R. (1980) The mathematical experience. With an introduction by Gian-Carlo Rota. Birkhäuser, Boston, MA

    Google Scholar 

  • Dedekind, R. (1872). Continuity and irrational numbers.

  • Dossena R., Magnani L. (2007) Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI) 64: 193–213

    Article  Google Scholar 

  • Dummett M. (1977) Elements of intuitionism. Written with the assistance of Roberto Minio. Oxford Logic Guides. Clarendon Press, Oxford

    Google Scholar 

  • Dummett M. (2000) Elements of intuitionism, 2nd edn. Oxford Logic Guides, 39. The Clarendon Press/Oxford University Press, New York

    Google Scholar 

  • Ehrlich, P. (1994). Real numbers, generalizations of the reals, and theories of continua. In P. Ehrlich & P. Ehrlich (Eds.), Synthese Library, 242 Dordrecht: Kluwer.

  • Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121

    Article  Google Scholar 

  • Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146

    Google Scholar 

  • Ewald W. (1996) From Kant to Hilbert. A source book in the foundations of mathematics. Clarendon Press, Oxford

    Google Scholar 

  • Fearnley-Sander D. (1979) Hermann Grassmann and the creation of linear algebra. American Mathematics Monthly 86(10): 809–817

    Article  Google Scholar 

  • Feferman, S. (2000). Relationships between constructive, predicative and classical systems of analysis. Proof theory (Roskilde, 1997), 221–236, Synthese Library, 292. Dordrecht: Kluwer.

  • Feferman, S. (2009). Conceptions of the continuum [Le continu mathématique. Nouvelles conceptions, nouveaux enjeux]. Intellectica, 51, 169–189. See also http://math.stanford.edu/~feferman/papers/ConceptContin.pdf.

  • Frege, G. (1964). Begriffsschrift und andere Aufsätze. (German) Zweite Auflage. Mit E. Husserls und H. Scholz’ Anmerkungen herausgegeben von Ignacio Angelelli Georg Olms Verlagsbuchhandlung, Hildesheim.

  • Freudenthal H. (1971) Cauchy, Augustin-Louis. In: Gillispie C.C. (Ed.) Dictionary of scientific biography, vol. 3. Charles Scribner’s sons, New York, pp 131–148

    Google Scholar 

  • Freudenthal H. (1971) Did Cauchy plagiarise Bolzano?. Archive for History of Exact Sciences 7: 375–392

    Article  Google Scholar 

  • Fowler D. H. (1992) Dedekind’s theorem: \({\sqrt 2\times\sqrt 3=\sqrt6}\). American Mathematics Monthly 99(8): 725–733

    Article  Google Scholar 

  • Gandz S. (1936) The invention of the decimal fractions and the application of the exponential calculus by Immanuel Bonfils of Tarascon (c. 1350). Isis 25: 16–45

    Article  Google Scholar 

  • Gillies, D. (1992). The Fregean revolution in logic. In: Revolutions in Mathematics (pp. 265–305). New York: Oxford Science Publ./Oxford University Press.

  • Giordano P. (2010) Infinitesimals without logic. Russian Journal of Mathematical Physics 17(2): 159–191

    Article  Google Scholar 

  • Giusti, E. (2009). Les méthodes des maxima et minima de Fermat. Annals of Faculty in Science and Toulouse Mathematics (6), 18 (2009), Fascicule Special, 59–85.

  • Goldblatt R. (1998) Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics, 188. Springer, New York

    Google Scholar 

  • Grabiner J. (1981) The origins of Cauchy’s rigorous calculus. MIT Press, Cambridge, MA

    Google Scholar 

  • Grabiner J. (1983) Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematics Monthly 90(3): 185–194

    Article  Google Scholar 

  • Grattan-Guinness, I. (2004) The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica, 163–185.

  • Hardy, G. H., & Wright, E. M. (2008). An introduction to the theory of numbers, 6th edn. Revised by D. R. Heath-Brown and J. H. Silverman. Oxford University Press, Oxford.

  • Heidegger, M. (1962). Being and time. (J. Macquarrie and E. Robinson, trans.) New York: Harper & Row.

  • Heijting, A. (1973). Address to Professor A. Robinson. At the occasion of the Brouwer memorial lecture given by Prof. A.Robinson on the 26th April 1973. Nieuw Archievs of Wiskers (3) 21, 134–137.

  • Hellman G. (1993) Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem. Journal of Philosophical Logic 12: 221–248

    Article  Google Scholar 

  • Hellman G. (1998) Mathematical constructivism in spacetime. British Journal for the Philosophy of Science 49(3): 425–450

    Article  Google Scholar 

  • Hewitt E. (1948) Rings of real-valued continuous functions. I. Transaction in American Mathematical Society 64: 45–99

    Article  Google Scholar 

  • Heyting A. (1956) Intuitionism. An introduction. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  • Hilbert, D. (1919–1920) Natur und Mathematisches Erkennen: Vorlesungen, gehalten 1919–1920 in Göttingen. Nach der Ausarbeitung von Paul Bernays (Edited and with an English introduction by David E. Rowe), Basel, Birkhäuser (1992).

  • Hobson, E. W. (1994). On the infinite and the infinitesimal in mathematical analysis. Proceedings London Mathematical Society, vol. s1-35 (1902), no. 1, pp. 117–139 (reprinted in Real numbers, generalizations of the reals, and theories of continua, 3–26, Synthese Lib., 242. Dordrecht: Kluwer.

  • Jensen C. (1969) Pierre Fermat’s method of determining tangents of curves and its application to the conchoid and the quadratrix. Centaurus 14: 72–85

    Article  Google Scholar 

  • Jourdain P.E.B. (1913) The origins of Cauchy’s conceptions of a definite integral and of the continuity of a function. Isis I: 661–703

    Article  Google Scholar 

  • Kästner, A. G. (1758). Anfangsgründe der Mathematik (Foundations of Mathematics).

  • Katz, K., & Katz, M. (2010). Zooming in on infinitesimal 1−.9.. in a post-triumvirate era. Educational Studies in Mathematics, 74(3), 259–273 See arXiv:1003.1501.

    Google Scholar 

  • Katz K., Katz M. (2010) When is .999 . . . less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30

    Google Scholar 

  • Katz, K., & Katz, M. (2011). Cauchy’s continuum. Perspectives on Science. (in press).

  • Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach, 2nd edn. Prindle, Weber & Schimidt, Boston, ’86. Available online at http://www.math.wisc.edu/~keisler/calc.html.

  • Keisler, H. J. (1994). The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, pp. 207–237, Synthese Lib., vol. 242. Dordrecht: Kluwer.

  • Klein, F. Elementary mathematics from an advanced standpoint. vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924] Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).

  • Koetsier, T. (1991). Lakatos’ philosophy of mathematics. A historical approach. Studies in the History and Philosophy of Mathematics, 3. Amsterdam: North-Holland.

  • Kopell, N., & Stolzenberg, G. (1975) Commentary on E. Bishop’s talk (Historia Math. 2 (1975), 507–517). Proceedings of the American Academy Workshop on the Evolution of Modern Mathematics (Boston, Mass., 1974). Historia Mathematics, 2(4), 519–521.

  • Kreisel G. (1958) Review: Wittgenstein’s remarks on the foundations of mathematics. The British Journal for the Philosophy of Science 9(34): 135–158

    Article  Google Scholar 

  • Lagrange, J.-L. (1811) Mécanique Analytique. Courcier. reissued by Cambridge University Press, 2009.

  • Lakatos, I. (1966). Cauchy and the continuum: The significance of nonstandard analysis for the history and philosophy of mathematics. Mathematics Intelligencer 1 (1978), no. 3, 151–161 (originally published in 1966).

  • Lakoff, G., & Núñez R. (2000). Where mathematics comes from. How the embodied mind brings mathematics into being New York: Basic Books

  • Laugwitz D. (1989) Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences 39(3): 195–245

    Article  Google Scholar 

  • Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des Sciences 45(1): 115–128

    Article  Google Scholar 

  • Laugwitz D. (2000) Comments on the paper: “Two letters by N. N. Luzin to M. Ya. Vygodskiĭ”. American Mathematics Monthly 107(3): 267–276

    Article  Google Scholar 

  • Lightstone A. H. (1972) Infinitesimals. American Mathematics Monthly 79: 242–251

    Article  Google Scholar 

  • Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems, pp. 98–113. Amsterdam: North-Holland.

  • Luzin, N. N. (1931). Two letters by N. N. Luzin to M. Ya. Vygodskii. With an introduction by S. S. Demidov. Translated from the 1997 Russian original by A. Shenitzer. American Mathematics Monthly 107(1), 64–82 (2000)

    Google Scholar 

  • Magnani L., Dossena R. (2005) Perceiving the infinite and the infinitesimal world: Unveiling and optical diagrams in mathematics. Foundations in Science 10(1): 7–23

    Article  Google Scholar 

  • Mahoney M. (1973) The mathematical career of Pierre de Fermat. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Mahoney, M. (1994). The mathematical career of Pierre de Fermat, 1601–1665, 2nd edn. Princeton Paperbacks. Princeton, NJ: Princeton University Press.

  • Manin, Y. (1977). A course in mathematical logic. Translated from the Russian by Neal Koblitz. Graduate Texts in Mathematics, 53. New York: Springer.

  • Meschkowski H. (1965) Aus den Briefbuchern Georg Cantors. Archive for History of Exact Sciences 2: 503–519

    Article  Google Scholar 

  • Moore M. (2002) Archimedean intuitions. Theoria (Stockholm) 68(3): 185–204

    Google Scholar 

  • Moore M. (2007) The completeness of the real line. Crí tica: Revista Hispanoamericana de Filosofí a 39(117): 61–86

    Google Scholar 

  • Muntersbjorn M. (2003) Representational innovation and mathematical ontology. Logic and mathematical reasoning (Mexico City, 1997). Synthese 134(1–2): 159–180

    Article  Google Scholar 

  • Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin on American Mathematical Society 83(6): 1165–1198

    Article  Google Scholar 

  • Novikov, S. P. (2002). The second half of the 20th century and its results: The crisis of the society of physicists and mathematicians in Russia and in the West. (Russian) Istor.-Mat. Issled. (2) No. 7(42), 326–356, 369.

  • Novikov, S. P. (2002). The second half of the 20th century and its conclusion: crisis in the physics and mathematics community in Russia and in the Western American Mathematical Society. Transl. Ser. 2, 212, Geometry, topology, and mathematical physics, 1–24, Am. Math. Soc., Providence, RI, 2004. (Translated from Istor.-Mat. Issled. (2) No. 7(42), 326–356, 369; by A. Sossinsky.)

  • Peirce, C. (1903). Collected Papers of Charles Sanders Peirce.

  • Pierpont J. (1899) On the arithmetization of mathematics. Bulletin on American Mathematical Society 5(8): 394–406

    Article  Google Scholar 

  • Poisson, S. D. (1833). Traité de méchanique, Part I (2nd ed.). Paris.

  • Pourciau Bruce (1999) The education of a pure mathematician. American Mathematics Monthly 106(8): 720–732

    Article  Google Scholar 

  • Pourciau Bruce (2000) Intuitionism as a (failed) Kuhnian revolution in mathematics. Studies in History and Philosophy and Science 31A(2): 297–329

    Article  Google Scholar 

  • Putnam, H. (2007). Wittgenstein and the Real Numbers. Wittgenstein and the Moral Life. In A. Crary (Ed.), (pp. 235–250). Cambridge, MA: MIT Press.

  • Rappaport K. (1981) S. Kovalevsky: A mathematical lesson. American Mathematics Monthly 88(8): 564–574

    Article  Google Scholar 

  • Reyes G. M. (2004) The Rhetoric in Mathematics: Newton, Leibniz, the Calculus, and the Rhetorical Force of the Infinitesimal. Quarterly Journal of Speech 90(2): 159–184

    Article  Google Scholar 

  • Richman, F. (1994). Confessions of a formalist, Platonist intuitionist. April 9, 1994. Available at http://math.fau.edu/Richman/HTML/Confess.htm.

  • Richman F. (1996) Interview with a constructive mathematician. Modern Logic 6(3): 247–271

    Google Scholar 

  • Robinson A. (1966) Non-standard analysis. North-Holland, Amsterdam

    Google Scholar 

  • Robinson, A. (1967). The metaphysics of the calculus. In Problems in the philosophy of mathematics, (pp. 28–46). Amsterdam: North-Holland.

  • Robinson, A. (1979). Selected papers of Abraham Robinson, vol. II. Nonstandard analysis and philosophy. Edited and with introductions by W. A. J. Luxemburg and S. Körner. Yale University Press, New Haven, Conn.

  • Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199

    Article  Google Scholar 

  • Sad L. A., Teixeira M. V., Baldino R. B. (2001) Cauchy and the problem of point-wise convergence. Archieves in International Historical Science 51(147): 277–308

    Google Scholar 

  • Schubring, G. (2005). Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th Century France and Germany. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

  • Scott, J. (1981). The Mathematical Work of John Wallis, D.D., F.R.S. (1616–1703). New York, NY: Chelsea Publishing Co.

  • Sepkoski D. (2005) Nominalism and constructivism in seventeenth-century mathematical philosophy. Historia Mathematica 32(1): 33–59

    Article  Google Scholar 

  • Sfard A. (1994) Reification as the birth of metaphor. For the Learning of Mathematics 14(1): 44–55

    Google Scholar 

  • Shapiro S. (1997) Philosophy of mathematics. Structure and ontology. Oxford University Press, New York

    Google Scholar 

  • Shapiro S. (2001) Why anti-realists and classical mathematicians cannot get along. Topoi 20(1): 53–63

    Article  Google Scholar 

  • Sherry D. (1987) The wake of Berkeley’s Analyst: Rigor mathematicae?. Studies in Historical Philosophy and Science 18(4): 455–480

    Article  Google Scholar 

  • Sherry D. (2009) The role of diagrams in mathematical arguments. Foundations of science 14: 59–74

    Article  Google Scholar 

  • Sinaceur H. (1973) Cauchy et Bolzano. Review in Histoire Science Applications 26(2): 97–112

    Article  Google Scholar 

  • Smithies F. (1986) Cauchy’s conception of rigour in analysis. Archieves in Historical Exact Science 36(1): 41–61

    Article  Google Scholar 

  • Stevin, S. (1958). The principal works of Simon Stevin. Vols. IIA, IIB: Mathematics. In: D. J. Struik, C. V. Swets & Zeitlinger (Eds.), Amsterdam 1958. Vol. IIA: v+pp. 1–455 (1 plate). Vol. IIB: 1958 iv+pp, pp. 459–976.

  • Stillwell J. (2006) Yearning for the impossible. The surprising truths of mathematics. A K Peters Ltd, Wellesley, MA

    Google Scholar 

  • Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970). Studies in Logic and Foundations of Math., 69, 47–64. Amsterdam: North-Holland.

  • Struik, D. (Ed.) (1969) A source book in mathematics, 1200–1800. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Sullivan, K. (1976). The Teaching of Elementary Calculus Using the Nonstandard Analysis Approach, American Mathematics Monthly, 83, 370–375. http://www.jstor.org/stable/2318657.

  • Tait W. (1983) Against intuitionism: Constructive mathematics is part of classical mathematics. Journal of Philosophical Logic 12(2): 173–195

    Article  Google Scholar 

  • Tait, W. (2001). Beyond the axioms: The question of objectivity in mathematics. The George Boolos Memorial Symposium, II (Notre Dame, IN, 1998). Philosopical Mathematics (3) 9(1), 21–36

    Google Scholar 

  • Tall D. (1980) Looking at graphs through infinitesimal microscopes, windows and telescopes. Mathematics Gazette 64: 22–49

    Article  Google Scholar 

  • Tall D. (1991) The psychology of advanced mathematical thinking. In: Tall D.O. (Ed.) Advanced mathematical thinking, Mathematics Education Library, 11. Kluwer, Dordrecht

    Google Scholar 

  • Tall, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus, pp. 1–11 in Transforming Mathematics Education through the use of Dynamic Mathematics, ZDM (june 2009).

  • Taylor, R. G. (2000). Review of Real numbers, generalizations of the reals, and theories of continua. In P. Ehrlich (Ed.), [see item [45] above]. Modern Logic, 8(1/2), 195–212.

  • Troelstra, A., & van Dalen, D. (1988). Constructivism in mathematics, vol. I. An introduction. Studies in Logic and the Foundations of Mathematics, 121. Amsterdam: North-Holland.

  • van der Waerden B.L. (1985) A history of algebra. From al-Khwarizmi to Emmy Noether. Springer, Berlin

    Google Scholar 

  • Veronese, G. (1891). Fondamenti di geometria a più dimensioni e a più specie di unità rettilinee esposti in forma elementare, Lezioni per la Scuola di magistero in Matematica. Padova, Tipografia del Seminario.

  • Vincenti W., Bloor D. (2003) Boundaries, contingencies and rigor: Thoughts on mathematics prompted by a case study in transonic aerodynamics. Social studies of science 33: 469–507

    Article  Google Scholar 

  • Wallis, J. (2004). The arithmetic of infinitesimals. Translated from the Latin and with an introduction by Jaequeline A. Stedall. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

  • Weil, A. (1973). Book Review: The mathematical career of Pierre de Fermat. Bulletin in American Mathematical Society, 79(6), 1138–1149 (review of item [94] above).

  • Weil A. k. (1984) Number theory. An approach through history From Hammurapi to Legendre. Birkhäuser Boston Inc, Boston, MA

    Google Scholar 

  • Wilson, M. L. (1992). Frege: The royal road from geometry. Noûs, 26(2), 149–180 [reprinted in Frege’s philosophy of mathematics, 108–149, Harvard University Press, Cambridge, MA, 1995].

  • Yablo S. (2005) The myth of the seven. In: Kalderon M. E. (Ed.) Fictionalism in metaphysics. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Additional information

Mikhail G. Katz: Supported by the Israel Science Foundation grant 1294/06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, K.U., Katz, M.G. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Found Sci 17, 51–89 (2012). https://doi.org/10.1007/s10699-011-9223-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-011-9223-1

Keywords

Navigation