Skip to main content
Log in

Towards a Hierarchical Definition of Life, the Organism, and Death

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Despite hundreds of definitions, no consensus exists on a definition of life or on the closely related and problematic definitions of the organism and death. These problems retard practical and theoretical development in, for example, exobiology, artificial life, biology and evolution. This paper suggests improving this situation by basing definitions on a theory of a generalized particle hierarchy. This theory uses the common denominator of the “operator” for a unified ranking of both particles and organisms, from elementary particles to animals with brains. Accordingly, this ranking is called “the operator hierarchy”. This hierarchy allows life to be defined as: matter with the configuration of an operator, and that possesses a complexity equal to, or even higher than the cellular operator. Living is then synonymous with the dynamics of such operators and the word organism refers to a select group of operators that fit the definition of life. The minimum condition defining an organism is its existence as an operator, construction thus being more essential than metabolism, growth or reproduction. In the operator hierarchy, every organism is associated with a specific closure, for example, the nucleus in eukaryotes. This allows death to be defined as: the state in which an organism has lost its closure following irreversible deterioration of its organization. The generality of the operator hierarchy also offers a context to discuss “life as we do not know it”. The paper ends with testing the definition’s practical value with a range of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen J. F. (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondria genomes. Journal of Theoretical Biology 165: 609–631

    Article  Google Scholar 

  • Becquerel, P. (1950). La suspension de la vie des spores des bactéries et des moisissures desséchées dans le vide, vers le zéro absolu. Ses conséquences pour la dissémination et la conservation de la vie dans l”univers. Les Comptes rendus de l”Académie des sciences, Paris 231, 1274; 1392–1394.

  • Becquerel P. (1951) La suspension de la vie des algues, lichens, mousses, aux zéro absolu et role de la synérèse réversible pour l”existence de la flore polaire et des hautes altitudes. Les Comptes rendus de l”Académie des sciences, Paris 232: 22–25

    Google Scholar 

  • Bedau, M. A. (2007). What is life. In S. Sarkar & A. Plutynski (Eds.), A companion to the philosophy of biology (pp. 455–603).

  • Berg O. G., Kurland C. G. (2000) Why mitochondrial genes are most often found in nuclei. Molecular Biology and Evolution 17: 951–961

    Google Scholar 

  • Bonner J. T. (1998) The Origins of Multicellularity. J.T. Bonner. Integrative Biology 1: 27–36

    Article  Google Scholar 

  • Bro P. (1997) Chemical reaction automata. Precursors of artificial organisms. Complexity 2: 38–44

    Article  Google Scholar 

  • Broca (1860–1861). Rapport sur la question soumise à la Société de Biologie au sujet de la reviviscence des animaux desséchés. Mém. Soc. Biol., 3me Série, II, 1860, 1–139.

  • Bullock, S., Noble, J., Watson, R., & Bedau, M. A. (Eds.) (2008). Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems. Cambridge, MA: MIT Press.

  • Capps G. J., Samuels D. C., Chinnery P. F. (2003) A model of the nuclear control of mitochondrial DNA replication. Journal of Theoretical Biology 221: 565–583

    Article  Google Scholar 

  • Chandler, J. L. R., & Van de Vijver, G. (Eds.) (2000). Closure: Emergent organizations and their dynamics. Annals of the New York academy of Sciences 901.

  • Checkland P., Scholes J. (1990) Soft systems methodology in action. Wiley, Chichester, p 329

    Google Scholar 

  • Clark C. G., Roger A. J. (1995) Direct evidence for secondary loss of mitochondria in Entamoeba hitolytica. Proceedings of the National Academy of Sciences of the USA 92: 6518–6521

    Article  Google Scholar 

  • Cleland C. E., Chyba C. F. (2002) Defining “life”. Origins of life and evolution of the Biosphere 32: 387–393

    Article  Google Scholar 

  • Cleland, C. E., & Chyba, C. F. (2007). Does “life” have a definition?. In T. Woodruff, I. I. I. Sullivan, & J. A. Baross, Planets and Life: The Emerging Science of Astrobiology. : Cambridge University Press.

  • Dawkins R. (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Eigen M. (1971) Molekulare Selbstorganisation und Evolution (Self organization of matter and the evolution of biological macro molecules). Naturwissenschaften 58: 465–523

    Article  Google Scholar 

  • Eigen M., Schuster P. (1979) The hypercycle: A principle of self-organization. Springer, New York

    Google Scholar 

  • Emmeche C. (1997) Autopoietic systems, replicators, and the search for a meaningful biological definition of life. Ultimate Reality and Meaning 20: 244–264

    Google Scholar 

  • Etxeberria A. (2004) Autopoiesis and natural drift: Genetic information, reproduction, and evolution revisited. Artificial Life 10: 347–360

    Article  Google Scholar 

  • Gánti T. (1971) The principle of life (in Hungarian). Gondolat, Budapest

    Google Scholar 

  • Grosberg R. K., Strathmann R. R. (2007) The evolution of multicellularity: A minor major transition?. Annual Review of Ecology, Evolution, and Systematics 38: 621–654

    Article  Google Scholar 

  • Happel, B. L. M. (1997). Principles of neural organization: Modular neuro-dynamics. PhD thesis, 125 pp.

  • Hazen R. M. (2001) Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proceedings of the National Academy of Sciences 98: 5487–5490

    Article  Google Scholar 

  • Hengeveld R., Fedonkin M. A. (2007) Bootstapping the energy flow in the beginning of life. Acta Biotheoretica 55: 181–226

    Article  Google Scholar 

  • Heylighen F. (1990) Relational Closure: A mathematical concept for distinction-making and complexity analysis. In: Trappl R. (eds) Cybernetics and Systems “90. World Science, Singapore, pp 335–342

    Google Scholar 

  • Heylighen F. (1991) Modeling Emergence. World Futures: The Journal of General Evolution 31: 89–104

    Google Scholar 

  • Hull D. L. (1981) Units of evolution: A metaphysical essay. In: Jensen U. J., Harré R. (eds) The philosophy of evolution. St. Martins Press, New York, pp 23–44

    Google Scholar 

  • Jagersop Akkerhuis G. A. J. M. (2001) Extrapolating a hierarchy of building block systems towards future neural network organisms. Acta Biotheoretica 49: 171–189

    Article  Google Scholar 

  • Jagersop Akkerhuis G. A. J. M. (2008) Analyzing hierarchy in the organization of biological and physical systems. Biological Reviews 83: 1–12

    Article  Google Scholar 

  • Jagersop Akkerhuis G. A. J. M., van Straalen N. M. (1999) Operators, the Lego–bricks of nature: Evolutionary transitions from fermions to neural networks. World Futures, the Journal of General Evolution 53: 329–345

    Google Scholar 

  • Jeuken M. (1975) The biological and philosophical definitions of life. Acta Biotheoretica 24: 14–21

    Article  Google Scholar 

  • Kaiser D. (2001) Building a multicellular organism. Annual Review Genetics 35: 103–123

    Article  Google Scholar 

  • Kauffman S. A. (1986) Autocatalytic sets of proteins. Journal of Theoretical Biology 119: 1–24

    Article  Google Scholar 

  • Kauffman S. A. (1993) The origins of order. Self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Keilin D. (1959) The Leeuwenhoek lecture: The problem of anabiosis or latent life: History and current concept. Proceedings of the Royal Society of London, Series B, Biological Sciences 150: 149–191

    Article  Google Scholar 

  • Korzeniewski B. (2005) Confrontation of the cybernetic definition of a living individual with the real world. Acta Biotheoretica 53: 1–28

    Article  Google Scholar 

  • Koshland D. E. Jr. (2002) The seven pillars of life. Science 295: 2215–2216

    Article  Google Scholar 

  • Kunin V. (2000) A system of two polymerases. A model for the origin of life. Origins of Life and Evolution of the Biosphere 30: 459–466

    Article  Google Scholar 

  • Kurzweil R. (1999) The age of spiritual machines. When computers exceed human intelligence. Viking, New York

    Google Scholar 

  • Lane N. (2005) Power, sex, suicide. Mitochondria and the meaning of life. Oxford University Press, Oxford, p 354

    Google Scholar 

  • Mackie G. O., Anderson P. A. V., Singla C. L. (1984) Apparent absence of gap junctions in two classes of Cnidaria. The Biological Bulletin 167: 120–123

    Article  Google Scholar 

  • Martin W., Russel M. J. (2002) On the origins of cells: A hypothesis for the evolutionary transitions from abiotic chemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleate cells. Philosophical Transactions of the Royal Society of London, series B-Biological Sciences 358: 59–83

    Article  Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and Cognition. The Realization of the Living. Dordrecht: D. Reidel (also in Boston Studies in the Philosophy of Science, 42).

  • Maynard Smith, J., & Szathmáry, E. (1995). The Major Transitions in Evolution. Oxford: Freeman & Co (now Oxford University Press).

  • Maynard Smith J., Szathmáry E. (1999) The origins of life. Oxford University Press, Oxford

    Google Scholar 

  • Morales, J. (1998). The definition of life. Psychozoan, 1(a strictly electronic journal), 1–39.

  • Munson, J. R., & York, R. C. (2003). Philosophy of biology. Encyclopedia Britannica. Britannica 2003 ultimate reference suite. (http://www.compilerpress.atfreeweb.com/Anno%20Munson%20EB%20Philosophy%20of%20biology.htm).

  • Murre J. M. J., Phaf R. H., Wolters G. (1992) CALM: Categorizing and learning module. Neural Networks 5: 55–82

    Article  Google Scholar 

  • Nicholson B. J. (2003) Gap junctions—from cell to molecule. Journal of Cell Science 116: 4479–4481

    Article  Google Scholar 

  • Oliver J. D., Perry R. S. (2006) Definitely life but not definitely. Origins of Life and Evolution of the Biosphere 36: 515–521

    Google Scholar 

  • Pagels H. R. (1985) Perfect symmetry: The search for the beginning of time. Simon and Schuster, New York

    Google Scholar 

  • Panchin Y. V. (2005) Evolution of gap junction proteins—the pannexin alternative. Journal of Experimental Biology 208: 1415–1419

    Article  Google Scholar 

  • Peracchia, C., Benos, D.J. (eds) (2000) Gap Junctions: Molecular Basis of Cell Communication in Health and Disease (Current Topics in Membranes, Volume 49). Academic press, New York

    Google Scholar 

  • Poundstone W. (1984) The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge. William Morrow, New York

    Google Scholar 

  • Popa R. (2003) Between necessity and probability. Searching for the definition and the origin of life. Advances in Astrobiology and Biogeophysics. Springer, Berlin

    Google Scholar 

  • Ray T. S. (1991) Evolution and optimization of digital organisms. In: Billingsley K. R., Derohanes E., Brown H. (eds) Scientific excellence in supercomputing: The IBM 1990 contest Prize Papers. The Baldwin Press, The University of Georgia, Athens, GA, pp 489–531

    Google Scholar 

  • Rivera M., Jain R., Moore J. E., Lake J. A. (1998) Genomic evidence for two functionally distinct gene classes. Proceedings of the National Academy of Sciences of the USA 95: 6239–6244

    Article  Google Scholar 

  • Rosen R. (1958) A relational theory of biological systems. Bulletin of Mathematical Biophysics 20: 245–260

    Article  Google Scholar 

  • Rosen R. (1973) On the dynamical realization of (M,R)-systems. Bulletin of Mathematical Biophysics 35: 1–9

    Google Scholar 

  • Rosen R. (1991) Life itself. A comprehensive inquiry into the nature, origin and fabrication of life. Columbia University Press, New York

    Google Scholar 

  • Ruiz-Mirazo K., Pereto J., Moreno A. (2004) A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere 34: 323–345

    Article  Google Scholar 

  • Searcy D. G. (2003) Metabolic integration during the evolutionary origin of mitochondria. Cell Research 13: 229–238

    Article  Google Scholar 

  • Sims K. (1994) Evolving 3D Morphology and Behavior by Competition. In: Brooks M. (eds) Artificial Life IV Proceedings. MIT Press, Cambridge, MA, pp 28–39

    Google Scholar 

  • Teilhard de Chardin, P. (1966). Man’s place in nature. The human zoology group. Editions du Seuil VIII, Paris, 1949.

  • Teilhard de Chardin, P. (1969). The future of man. Editions du Seuil V, Paris, 1946.

  • Tinbergen, N. (1946). Inleiding tot de diersociologie (Introduction to animal sociology). J. Noorduijn en Zoon, Gorinchem.

  • Townsend C. R., Begon M., Harper J. L. (2008) Essentials of ecology (3rd ed.). Blackwell publishing, Oxford

    Google Scholar 

  • Turchin, V. (1995). A dialogue on metasystem transitions. In F. Heylighen, C. Joslyn, & V. Turchin (Eds.), 1995, The Quantum of Evolution. Toward a theory of metasystem transitions. (Gordon and Breach Science Publishers, New York) (special issue of “World Futures: The journal of general evolution, Vol. 45).

  • Turchin V. (1977) The phenomenon of science. Columbia University Press, New York

    Google Scholar 

  • van der Steen W. J. (1997) Limitations of general concepts: A comment on Emmeche’s definition of “life”. Ultimate Reality and Meaning 20: 317–320

    Google Scholar 

  • Varela F. J. (1979) Principles of biological autonomy. North Holland, New York

    Google Scholar 

  • von Bertalanffy L. (1968) General systems theory, foundations, development, applications. Penguin Books Ltd. Harmondsworth, Middlesex, England

    Google Scholar 

  • von Neumann J., & Burks, A. W. (1966). Theory of self-reproducing automata.

  • Willensdorfer, M. (2008). On the evolution of differentiated multicellularity. arXiv 0801.2610v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard A. J. M. Jagers op Akkerhuis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagers op Akkerhuis, G.A.J.M. Towards a Hierarchical Definition of Life, the Organism, and Death. Found Sci 15, 245–262 (2010). https://doi.org/10.1007/s10699-010-9177-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-010-9177-8

Keywords

Navigation