Skip to main content
Log in

A Process Theory of Enzyme Catalytic Power – the Interplay of Science and Metaphysics

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

Enzymes are protein catalysts of extraordinary efficiency, capable of bringing about rate enhancements of their biochemical reactions that can approach factors of 1020. Theories of enzyme catalysis, which seek to explain the means by which enzymes effect catalytic transformation of the substrate molecules on which they work, have evolved over the past century from the “lock-and-key” model proposed by Emil Fischer in 1894 to models that explicitly rely on transition state theory to the most recent theories that strive to provide accounts that stress the essential role of protein dynamics. In this paper, I attempt to construct a metaphysical framework within which these new models of enzyme catalysis can be developed. This framework is constructed from key doctrines of process thought, which gives ontologic priority to becoming over being, as well as tenets of a process philosophy of chemistry, which stresses environmentally responsive molecular transformation. Enzyme catalysis can now be seen not as enzyme acting on its substrate, but rather as enzyme and substrate entering into a relation which allows them to traverse the reaction coordinate as an ontologic unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Adams and R.L. Stein. Novel Inhibitors of the Proteasome. Annual Reports of Medicinal Chemistry 31: 279–288, 1996

    Google Scholar 

  • D. Antoniou, S. Caratzoulus, C. Kalyanaraman, J.S. Mincer and S.D. Schwartz, Barrier Passage an Protein Dynamics in Enzymatically Catalyzed Reactions. European Journal of Biochemistry 269 (2002) 3103-3112

    Article  Google Scholar 

  • S. Arrhenius. Journal of Physical Chemistry 4: 226–237, 1889

    Google Scholar 

  • B. Barlogie, J. Shaughnessy, G. Tricot, J. Jacobson, M. Zangair, E. Anaissie, R. Walker and J. Crowley, Treatment of Multiple loma. Blood 103 (2004) 20-32

    Article  Google Scholar 

  • L.A. Blumenfeld, Problems of Biological Physics. Heidelberg: Springer (1981).

    Google Scholar 

  • M. Bunge, Is Scientific Metaphysics Possible?. Journal of Philosophy 68 (1971) 507-520

    Article  Google Scholar 

  • G. Careri, P. Fasella and E. Gratton, Enzyme Dynamics – Statistical Physics Approach. Annual Review of Biophysics and Bioenergetics 8 (1979) 69-97

    Article  Google Scholar 

  • A. Case and R.L. Stein, Mechanistic Origins of the Substrate Selectivity of Serine Proteases. Biochemistry 42 (2003) 9466-9481

    Article  Google Scholar 

  • J.B. Cobb, Ecology, Science, and Religion: Toward a Postmodern Worldview. In: D.R. Griffin (ed.) The Reenchantment of Science. Albany: State University of New York Press (1988) pp. 99-114

    Google Scholar 

  • J.E. Earley, The Nature of Chemical Existence. In: P.A. Bogaard and G. Treash (eds.) Metaphysics as Foundation – Essays in Honor of Ivor Leclerc. Albany: State University of New York Press (1993) pp. 272-284

    Google Scholar 

  • A. Einstein and L. Infeld, The Evolution of Physics – From Early Concepts to Relativity and Quanta. New York: Simon and Shuster (1938).

    Google Scholar 

  • H. Eyring, The Activated Complex and the Absolute Rates of Chemical Reactions. Chemical Reviews 17 (1935a) 65-77

    Article  Google Scholar 

  • H. Eyring, The Activated Complex in Chemical Reactions. Journal of Physical Chemistry 3 (1935b) 107-115

    Article  Google Scholar 

  • R.P. Feynmann, R.B. Leighton and M. Sands, The Feynmann Lectures in Physics. Reading, MA: Addison-Wesley Press (1963).

    Google Scholar 

  • E. Fischer, Einfluss der Configuration aur de Wirkung Derenzyme. Berichte der Deutschen Chemischen Gesellschaft 27 (1894) 2985-2993

    Article  Google Scholar 

  • F.K. Fong, A Successor to Transition-State Theory. Accounts of Chemical Research 9 (1976) 433-438

    Article  Google Scholar 

  • S. Glasstone, K.J. Laidler and H. Eyring, The Theory of Rate Processes. New York: McGraw-Hill Book Co. (1941).

    Google Scholar 

  • D.R. Griffin, Of Minds and Molecules: Postmodern Medicine in a Psychosomatic Universe. In: D.R. Griffin (ed.) The Reenchantment of Science. Albany: State Univesity of New York Press (1988) pp.

    Google Scholar 

  • E.E. Harris, The Foundations of Metaphysics in Science. London: George Allen and Unwin Ltd. (1965).

    Google Scholar 

  • A. Hengge and R.L. Stein, Role of Protein Conformational Mobility in Enzyme Catalysis – Acylation of α-Chymotrypsin by Specific Peptide Substrates. Biochemistry 43 (2004) 742-747

    Article  Google Scholar 

  • M.J. Knapp and J.P. Klinman, Environmentally Coupled Hydrogen Tunneling – Linking Catalysis to Dynamics. European Journal of Biochemistry 269 (2002) 3113-3121

    Article  Google Scholar 

  • Kurzynski M. K. A Synthetic Picture of Intramolecular Dynamics of Proteins. Towards a Contemporary Statistical Theory of Biochemical Processes. Progress in Biophysics and Molecular Biology 69: 23–82, 1998

  • M. Lange, An Introduction to the Philosophy of Physics – Locality, Field, Energy, and Mass. Oxford: Blackwell Publishing (2002).

    Google Scholar 

  • I. Leclerc, The Nature of Physical Existence. London: George Allen & Unwin Ltd. (1972).

    Google Scholar 

  • H.N. Lee, Metaphysics as Hypothesis. Journal of Philosophy 44 (1947) 344-352

    Article  Google Scholar 

  • R. Lumry, Thermodynamic and Kinetic Aspects of Protein Conformations in Relation tgo Physiological Function. In: S. Timasheff and G. Fasman (eds.) Structure and Stability of Biological Macromolecules. New York: Dekker (1969) pp. 65-212

    Google Scholar 

  • G.M. Maggiora and R.L. Schowen, The Interplay of Theory and Experiment in Bioorganic Chemistry – Three Case Histories. In: E.E. Tamelen van (ed.) Bioorganic Chemistry. New York: Academic Press (1977) pp.

    Google Scholar 

  • B.G. Miller and R. Wolfenden, Catalytic Proficiency: The Unusual Case of OMP Decarboxylase. Annual Review Biochemistry 71 (2002) 847-885

    Article  Google Scholar 

  • K. Ng and A. Rosenberg, The Coupling of Catalytically Relevant Conformational Fluctuations in Subtilisin BPN’ to Solution Viscosity Revealed by Hydrogen Isotope Effects on Exchange and Inhibitor Binding. Biophysical Chemistry 41 (1991) 289-299

    Article  Google Scholar 

  • L. Pauling, Molecular Architecture and Biological Reactions. Chemical and Engineering News 24 (1946) 1375-1377

    Google Scholar 

  • L. Pauling, The Nature of Forces Between Large Molecules of Biological Interest. Proceedings of the Royal Institute of Great Britian 34 (1948) 181-187

    Google Scholar 

  • G.A. Petersson, Perspectives on “The Activated Complex in Chemical Reactions”. Theoretical Chemistry Accounts 103 (2000) 190-195

    Google Scholar 

  • J. Polanyi, Direct Observation of the Transition State. Accounts of Chemical Research 28 (1995) 119-132

    Article  Google Scholar 

  • M. Reiher, A Systems Theory of Chemistry. Foundations of Chemistry 5 (2003a) 23-41

    Article  Google Scholar 

  • M. Reiher The Systems –Theoretical View of Chemical Concepts. Foundations of Chemistry 5: 147–163, 2003b

  • N. Rescher, Process Philosophy – A Survey of Basic Issues. Pittsburgh: University of Pitsburgh Press (2000).

    Google Scholar 

  • R.L. Schowen, Catalytic Power and Transition State Stabilization. In: R.D. Gandour and R.L. Schowen (eds.) Transition States of Biochemical Processes. New York: Plenum Press (1978) pp. 77-144

    Google Scholar 

  • R.L. Schowen, How an Enzyme Surmounts the Activation Energy Barrier. Proceedings of the National Academy of Sciences 100 (2004) 11931-11932

    Article  Google Scholar 

  • M. Snider and R. Wolfenden, The Rate of Spontaneous Decarboxylation of Amino Acids. Journal of the American Chemical Society 122 (2002) 11507-11508

    Article  Google Scholar 

  • B. Somogyi, G.R. Welch and S. Damjanovic, The Dynamic Basis of Energy Transduction in Enzymes. Biochimica Biophysica Acta 768 (1984) 81-112

    Google Scholar 

  • R.L. Stein, Towards a Process Philosophy of Chemistry. Hyle – International Journal for the Philosophy of Chemistry 10 (2004) 5-22

    Google Scholar 

  • R.L. Stein. Enzymes as Ecosystems – A Panexperientialist Account of Biocatalytic Chemical Transformation. Process Studies 33: 62–80, 2005

    Google Scholar 

  • R.L. Stein. An Inquiry into the Origins of Life on Earth – A Synthesis of Process Thought in Science and Theology. Zygon – Journal of Religion and Science 2006, in press

  • D.G. Truhlar and B.C. Garrett, Variational Transitions-State Theory. Accounts of Chemical Research 13 (1980) 440-448

    Article  Google Scholar 

  • G.R. Welch, B. Somogyi and S. Damjanovic, The Role of Protein Fluctuations in Enzyme Action – A Review. Progress in Biophysics and Molecular Biology 39 (1982) 109-146

    Article  Google Scholar 

  • The Fluctuating Enzyme. New York: John Wiley & Sons (1986).

    Google Scholar 

  • A.N. Whitehead. Process and Reality. New York: MacMillan Publishing Company, [1929] 1978

  • A.N. Whitehead. Adventures of Ideas. New York: The Free Press, [1933] 1967

  • K. Wilber, A Brief History of Everything. Boston: Shambhala Publishing, Inc. (2000).

    Google Scholar 

  • R. Wolfenden, Analog Approaches to the Structure of the Transition State in Enzyme Reactions. Accounts of Chemical Research 5 (1972) 10-18

    Article  Google Scholar 

  • W.F.K. Wynne-Jones and H. Eyring, The Absolute Rate of Reactions in Condensed Phases. Journal of Chemical Physics 3 (1935) 492-502

    Article  Google Scholar 

  • A.H. Zewail, Femtochemistry: Recent Progress in Studies of Dynamics and Control of Reactions and Their Transition States. Journal of Physical Chemistry 100 (1996) 12701-12724

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross L. Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, R.L. A Process Theory of Enzyme Catalytic Power – the Interplay of Science and Metaphysics. Found Chem 8, 3–29 (2006). https://doi.org/10.1007/s10698-005-7907-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-005-7907-8

Keywords

Navigation