Skip to main content

Advertisement

Log in

Functional characterization of the Japanese flounder (Paralichthys olivaceus) Sox2 gene promoter

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Sox2 has essential roles in early embryogenesis and the development of the central nervous system. Sox2 is also necessary in maintaining the identity of progenitor cells. In our study, a 1.8-kb fragment of the 5′ flanking region of Paralichthys olivaceus Sox2 (Po-Sox2) gene was cloned and functionally characterized. The activity and specificity of Po-Sox2 promoter were analyzed by comparing various deletion mutants for their ability to direct luciferase and GFP expression in flounder brain cell line. Results indicated that the basal promoter is located between −978 and −442 bp, and the region from −1370 to −978 bp enhances the promoter activity. The regulatory elements in the −1370 to −442 bp fragment were further investigated. Many binding sites of transcription factors closely related to neurogenesis and stem cell properties were found in this region. Mutational analysis indicated that Nanog, Pax6, p53, and POU binding sites play functional roles in the transcription of Po-Sox2 gene, whereas NF-Y binding sites did not affect this gene. In vivo studies using transient transgenic zebrafish embryos showed that the Po-Sox2 promoter region can drive GFP expression in brain, yolk syncytial layer, and notochord. Our results provide valuable information in understanding the molecular regulatory mechanisms of Po-Sox2 gene during neurogenesis and embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

CNS:

Central nervous system

NSCs:

Neural stem cells

FBCs:

Japanese flounder brain cells

FBC:

Flounder brain cell line

PCR:

Polymerase chain reaction

CMV:

Cytomegalovirus

PTU:

1-Phenyl 2-thiourea

TF:

Transcription factor

TSS:

Transcriptional start site

UTR:

Untranslated region

dph:

Days post-hatching

References

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bani-Yaghoub M, Tremblay RG, Lei JX, Zhang D, Zurakowski B, Sandhu JK, Smith B, Ribecco-Lutkiewicz M, Kennedy J, Walker PR (2006) Role of Sox2 in the development of the mouse neocortex. Dev Biol 295:52–66

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530

    Article  CAS  PubMed  Google Scholar 

  • Catena R, Tiveron C, Ronchi A, Porta S, Ferri A, Tatangelo L, Cavallaro M, Favaro R, Ottolenghi S, Reinbold R (2004) Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J Biol Chem 279:41846–41857

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro M, Mariani J, Lancini C, Latorre E, Caccia R, Gullo F, Valotta M, DeBiasi S, Spinardi L, Ronchi A (2008) Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development 135:541–557

    Article  CAS  PubMed  Google Scholar 

  • Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlström H, Lendahl U, Frisen J (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Eisen JS (1991) Developmental neurobiology of the zebrafish. J Neurosci 11:311–317

    CAS  PubMed  Google Scholar 

  • Ekström P, Johnsson CM, Ohlin LM (2001) Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 436:92–110

    Article  PubMed  Google Scholar 

  • Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from  embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165

  • Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V (2009) Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 12:1248–1256

    Article  CAS  PubMed  Google Scholar 

  • Gaete M, Muñoz R, Sánchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larraín J (2012) Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells. Neural Dev 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang Z, Shao K, Fan L, Yang L, Song H, Liu M, Wang Z, Wang X, Zhang Q (2014) Identification and characterization of a Sox2 homolog in the Japanese flounder Paralichthys olivaceus. Gene 544:165–176

    Article  CAS  PubMed  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin D, Gogvadze E, Kholodenko R, Grzela DP, Mityaev M, Vinogradova T, Kopantzev E, Malakhova G, Suntsova M, Sokov D (2010) Novel strong tissue specific promoter for gene expression in human germ cells. BMC Biotechnol 10:1801–1803

    Article  Google Scholar 

  • Lengler J, Bittner T, Münster D, Gawad A-D, Graw J (2005) Agonistic and antagonistic action of AP2, Msx2, Pax6, Prox1 AND Six3 in the regulation of Sox2 expression. Ophthalmic Res 37:301–309

    Article  CAS  PubMed  Google Scholar 

  • Li M, Pevny L, Lovell-Badge R, Smith A (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 8:S971–S972

    Article  Google Scholar 

  • Lorthongpanich C, Yang S-H, Piotrowska-Nitsche K, Parnpai R, Chan AW (2008) Development of single mouse blastomeres into blastocysts, outgrowths and the establishment of embryonic stem cells. Reproduction 135:805–813

    Article  CAS  PubMed  Google Scholar 

  • McCurrach ME, Connor TM, Knudson CM, Korsmeyer SJ, Lowe SW (1997) bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci 94:2345–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagi S, Nishimoto M, Saito T, Ninomiya M, Sawamoto K, Okano H, Muramatsu M, Oguro H, Iwama A, Okuda A (2006) The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem 281:13374–13381

    Article  CAS  PubMed  Google Scholar 

  • Nadjar-Boger E, Hinits Y, Funkenstein B (2012) Structural and functional analysis of myostatin-2 promoter alleles from the marine fish Sparus aurata: evidence for strong muscle-specific promoter activity and post-transcriptional regulation. Mol Cell Endocrinol 361:51–68

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Beach D (1994) Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J 13:4816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda Y, Yoda H, Uchikawa M, Furutani-Seiki M, Takeda H, Kondoh H, Kamachi Y (2006) Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Dev Dyn 235:811–825

    Article  CAS  PubMed  Google Scholar 

  • Perkins BD, Kainz PM, O’malley DM, Dowling JE (2002) Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors. Vis Neurosci 19:257–264

    Article  PubMed  Google Scholar 

  • Rodda DJ, Chew J-L, Lim L-H, Loh Y-H, Wang B, Ng H-H, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seikai T (2002) Flounder culture and its challenges in Asia. Rev Fish Sci 10:421–432

    Article  Google Scholar 

  • Tokusumi Y, Ma Y, Song X, Jacobson RH, Takada S (2007) The new core promoter element XCPE1 (X Core Promoter Element 1) directs activator, mediator, and TATA-binding protein-dependent but TFIID-independent RNA polymerase II transcription from TATA-less promoters. Mol Cell Biol 27:1844–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • URUN FR Comparison of the expression patterns of several sox genes between Oryzias latipes and Danio rerio

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    CAS  PubMed  Google Scholar 

  • Wiebe MS, Wilder PJ, Kelly D, Rizzino A (2000) Isolation, characterization, and differential expression of the murine Sox-2 promoter. Gene 246:383–393

    Article  CAS  PubMed  Google Scholar 

  • Wood HB, Episkopou V (1999) Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86:197–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang HN, Liu QY, Liu S, Xin-Mei LU, Deng YF, Luo C, Shi DS, Cui KQ (2013) Cloning and function analysis of buffalo SOX2 gene 5′ regulatory region. China Anim Husb Vet Med 40:1–8 (in Chinese with English abstract)

    Google Scholar 

  • Zhao J, Bilsland A, Hoare SF, Keith WN (2003) Involvement of NF-Y and Sp1 binding sequences in basal transcription of the human telomerase RNA gene. FEBS Lett 536:111–119

    Article  CAS  PubMed  Google Scholar 

  • Zupanc G (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202:1435–1446

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National High Technology Research and Development Program of China (No. 2012AA10A401) and China Postdoctoral Science Foundation (2015M551960). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Qi.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Song, H., Li, A. et al. Functional characterization of the Japanese flounder (Paralichthys olivaceus) Sox2 gene promoter. Fish Physiol Biochem 42, 1275–1285 (2016). https://doi.org/10.1007/s10695-016-0216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0216-4

Keywords

Navigation