Skip to main content

Advertisement

Log in

Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study aimed to investigate the optimal feeding rate for juvenile blunt snout bream (average initial weight 23.74 ± 0.09 g) based on the results on growth performance, intestinal digestive and absorptive capabilities and endocrine functions. A total of 840 fish were randomly distributed into 24 cages and fed a commercial feed at six feeding rates ranging from 2.0 to 7.0 % body weight (BW)/day. The results indicated that weight gain rate increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0 % BW/day, but decreased with the further increasing feeding rates (P > 0.05). Protein efficiency ratio and nitrogen and energy retention all showed a similar trend. However, feed conversion ratio increased significantly (P < 0.05) with increasing feeding rates. Feeding rates have little effects (P > 0.05) on whole-body moisture, ash and protein contents, but significantly (P < 0.05) affect both lipid and energy contents with the highest values both observed in fish fed 4.0 % BW/day. In addition, moderate ration sizes (2.0–4.0 % BW/day) resulted in the enhanced activities of intestinal enzymes, including lipase, protease, Na+, K+-ATPase, alkaline phosphatase and creatine kinase. Furthermore, the mRNA levels of growth hormone, insulin-like growth factors-I, growth hormone receptor and neuropeptide all increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0 % and 6.0 % BW/day, but decreased significantly (P < 0.05) with the further increase in feeding rates, whereas both leptin and cholecystokinin expressions showed an opposite trend. Based on the broken-line regression analysis of SGR against feeding rates, the optimal feeding rate for juvenile blunt snout bream was estimated to be 4.57 % BW/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abolfathi M, Hajimoradloo A, Ghorbani R, Zamani A (2012a) Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp Biochem Physiol A 161:166–173

    Article  CAS  Google Scholar 

  • Abolfathi M, Hajimoradloo A, Ghorbani R, Zamani A (2012b) Compensatory growth in juvenile roach Rutilus caspicus: effect of starvation and re-feeding on growth and digestive surface area. J Fish Biol 81:1880–1890

    Article  CAS  PubMed  Google Scholar 

  • AOAC (Association of Official Analytical Chemists) (1990) Official methods of analysis. AOAC, Arlington 1298

    Google Scholar 

  • Arora S (2006) Role of neuropeptides in appetite regulation and obesity-a review. Neuropeptides 40:375–401

    Article  CAS  PubMed  Google Scholar 

  • Björnsson BT, Johansson V, Benedet S, Eir EI, Hildahl J, Agustsson T, Jönsson E (2002) Growth hormone endocrinology of salmonids: regulatory mechanisms and mode of action. Fish Physiol Biochem 27:227–242

    Article  Google Scholar 

  • Boguszewski CL, Paz-Filho G, Velloso LA (2010) Neuroendocrine body weight regulation: integration between fat tissue, gastrointestinal tract, and the brain. Endokrynol Pol 61:194–206

    CAS  PubMed  Google Scholar 

  • Butler AA, Le RD (2001) Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu Rev Physiol 63:141–164

    Article  CAS  PubMed  Google Scholar 

  • Crespi EJ, Denver RJ (2006) Leptin (ob gene) of the South African clawed frog Xenopus laevis. Proc Natl Acad Sci USA 103:10092–10097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng DF, Koshio S, Yokoyama S, Sungchul CB, Shao QJ, Cui YB, Hung SSO (2003) Effects of feeding rate on growth performance of white sturgeon (Acipenser transmontanus) larvae. Aquaculture 217:589–598

  • Desai AS, Singh RK (2009) The effects of water temperature and ration size on growth and body composition of fry of common carp, Cyprinus carpio. J Therm Biol 34:276–280

    Article  Google Scholar 

  • Dockray GJ (2012) Cholecystokinin. Curr Opin Endocrinol Diabetes Obes 19:8–12

    Article  CAS  PubMed  Google Scholar 

  • Du ZY, Liu YJ, Tian LX, He JG, Cao JM, Liang GY (2006) The influence of feeding rate on growth, feed efficiency and body composition of juvenile grass carp (Ctenopharyngodon idella). Aquaculture 14:247–257

    Article  Google Scholar 

  • Engstad RE, Robertsen B, Frivold E (1992) Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish Shellfish Immunol 2:287–297

    Article  Google Scholar 

  • Feng K, Zhang GR, Wei KJ, Xiong BX, Liang T, Ping HC (2012) Molecular characterization of cholecystokinin in grass carp (Ctenopharyngodon idellus): cloning, localization, developmental profile, and effect of fasting and refeeding on expression in the brain and intestine. Fish Physiol Biochem 38:1825–1834

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MDA, Ceccon LCF, Almeida DV, Proietti MC, Marins LF (2007) The effect of GH overexpression on GHR and IGF-I gene regulation in different genotypes of GH-transgenic zebrafish. Comp Biochem Physiol D 2:228–233

    Google Scholar 

  • Fuentes EN, Peter K, Ingibjörg EE, Marco A, Juan AV, Alfredo M, Björn TB (2012) Plasma leptin and growth hormone levels in the fine flounder (Paralichthys adspersus) increase gradually during fasting and decline rapidly after refeeding. Gen Comp Endocrinol 177:120–127

    Article  CAS  PubMed  Google Scholar 

  • Funkenstein B, Silbergeld A, Cavari B, Laron Z (1989) Growth hormone increases plasma levels of insulin-like growth factor (IGF-I) in a teleost, the gilthead seabream (sparus aurata). J Endocrinol 120:R19–R21

    Article  CAS  PubMed  Google Scholar 

  • Furné MMC, Hidalgo A, López M, García-Gallego AE, Morales A, Domezain J, Domezainé AS (2005) Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture 250:391–398

    Article  Google Scholar 

  • German DP, Neuberger DT, Callahan MN, Lizardo NR, Evans DH (2010) Feast to famine: the effects of food quality and quantity on the gut structure and function of a detritivorous catfish (Teleostei: Loricariidae). Comp Biochem Phys A 155:281–293

    Article  Google Scholar 

  • Gjellesvik D, Lombardo D, Walther B (1992) Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim Biophys Acta 1124:123–134

    Article  CAS  PubMed  Google Scholar 

  • Harpaz S, Hakim Y, Barki A, Karplus I, Slosman T, Tufan EO (2005) Effects of different feeding levels during day and/or night on growth and brush-border enzyme activity in juvenile Lates calcarifer reared in freshwater re-circulating tanks. Aquaculture 248:325–335

    Article  CAS  Google Scholar 

  • Hung SSO, Lutes PB, Shqueir AA, Conte FS (1993) Effect of feeding rate and water temperature on growth of juvenile white sturgeon (Acipenser transmontanus). Aquaculture 115:297–303

    Article  Google Scholar 

  • Johansen SJS, Jobling M (1998) The influence of feeding regime on growth and slaughter traits of cage-reared Atlantic salmon. Aquac Int 6:1–17

    Article  Google Scholar 

  • Klein S, Cohn SM, Alpers DH (1998) The alimentary tract in nutrition. In: Shils ME, Olson AJ, Shike M, Ross AC (eds) Modern nutrition in health and disease. Williams and Wilkins, Baltimore, pp 605–630

    Google Scholar 

  • Koskela J, Jobling M, Savolainen R (1998) Influence of dietary fat level on feed intake, growth and fat deposition in the whitefish, Coregonus laÍaretus. Aquacult Int 6:95–102

    Article  Google Scholar 

  • Kuperman BI, Kuz’mina VV (1994) The ultrastructure of the intestinal epithelium in fishes with different types of feeding. J Fish Biol 44:181–193

    Article  Google Scholar 

  • Kurokawa T, Uji S, Suzuki T (2005) Identification of cDNA coding for a homologue to mammalian leptin from pufferfish, Takifugu rubripes. Peptides 26:745–750

    Article  CAS  PubMed  Google Scholar 

  • Lanari D, Poli BM, Ballestrazzi R, Lupi P, Agaro ED, Mecatti M (1999) The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L.). Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture 79:351–364

    Article  Google Scholar 

  • Laura BP, Josep ACG, Gabriel FBL, Jaume PS (2013) Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata). Br J Nutr 109:1175–1187

    Article  Google Scholar 

  • Leibowitz SF (1995) Brain peptides and obesity: pharmacologic treatment. Obes Res 3:573S–585S

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Zhang DD, Xu WN, Jiang GZ, Zhang CN, Li XF, Liu WB (2014) Effects of dietary choline supplementation on growth performance and hepatic lipid transport in blunt snout bream (Megalobrama amblycephala) fed high-fat diets. Aquaculture 434:340–347

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Londraville RL, Duvall CS (2002) Murine leptin injections increase intracellular fatty acid-binding protein in green sunfish (Lepomis cyanellus). Gen Comp Endocrinol 129:56–62

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Matthew WJ, Jay RR, Delbert MG III, Joan HG (2002) Effects of variable ration levels on direct and indirect measures of growth in juvenile red drum (Sciaenops ocellatus). J Exp Mar Biol Ecol 274:141–157

    Article  Google Scholar 

  • McCormick SD (1993) Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity. Can J Fish Aquat Sci 50:656–658

    Article  CAS  Google Scholar 

  • Mihelakakis A, Tsolkas C, Yoshimatsu T (2002) Optimization of feeding rate for hatchery-produced juvenile gilthead sea bream sparus aurata. J World Aquacult Soc 33:169–175

    Article  Google Scholar 

  • Murashita K, Kurokawa T (2009) Characterization, tissue distribution, and regulation of agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptideY (NPY) in Atlantic salmons/mo salar. Gen Comp Endocr 162:160–171

    Article  CAS  PubMed  Google Scholar 

  • Na Y, Guy S (2014) CCK (-like) and receptors: structure and phylogeny in a comparative perspective. Gen Comp Endocr 209:74–81

    Article  Google Scholar 

  • Ng WK, Lu KS, Roshada H, Ahyaudin A (2000) Effects of feeding rate on growth, feed utilizationand body composition of a tropical bagrid catfish. Aquac Int 8:19–29

    Article  CAS  Google Scholar 

  • Niu PD, Perez-Sanchez J, Le BPY (1993) Development of a protein binding assay for teleost insulin-like growth factor (IGF)-like: relationships between growth hormone (GH) and IGF-like in the blood of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 11:381–391

    Article  CAS  PubMed  Google Scholar 

  • Ping HC, Feng K, Zhang GR, Wei KJ, Zou GW, Wang WM (2014) Ontogeny expression of ghrelin, neuropeptide Y and cholecystokinin in blunt snout bream, Megalobrama amblycephala. J Anim Physiol Anim Nutr 98:338–346

    Article  CAS  Google Scholar 

  • Puvanendran V, Boyce DL, Brown JA (2003) Food ration requirements of 0+ yellowtail flounder Limanda ferruginea (Storer) juveniles. Aquaculture 220:459–475

    Article  Google Scholar 

  • Reddy PK, Leatherland JF (1995) Influence of the combination of time of feeding and ration level on the diurnal hormone rhythms in rainbow trout. Fish Physiol Biochem 14:25–36

    Article  CAS  PubMed  Google Scholar 

  • Rhoads J, Chen W, Chu P, Berschneider H, Argenzio R, Paradiso A (1994) L-glutamine and l-asparagine stimulate NA+-H+ exchange in porcine jejunal enterocytes. Am J Phys 266:G828–G838

    CAS  Google Scholar 

  • Robbins KR, Norton HW, Baker DH (1979) Estimation of nutrient requirements from growth data. J Nutr 109:1710–1714

    CAS  PubMed  Google Scholar 

  • Rosalki SB, Rau D, Lehmann D, Prentice M (1970) Gamma-glutamyl transpeptidase in chronic alcoholism. Lancet 296:1139

    Article  Google Scholar 

  • Salas-Leiton E, Anguis V, Martín-Antonio B, Diego C, Josep VP, Carlos I, Jose PC, Manuel M (2010) Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response. Fish Shellfish Immunol 28:296–302

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC (1999) Model for the regulation of energy balance and adiposity by the central nervous system. Nutrition 69:584–596

    CAS  Google Scholar 

  • Shamblott MJ, Cheng CM, Bolt D, Chen TT (1995) Appearance of insulin-like growth factor mRNA in the liver and pyloric ceca of a teleost in response to exogenous growth hormone. Proc Natl Acad Sci USA 92:6943–6946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimeno S, Shikata T, Hosokawa H, Masumoto T, Kheyyali D (1997) Metabolic response to feeding rates in common carp, Cyprinus carpio. Aquaculture 151:371–377

    Article  CAS  Google Scholar 

  • Stevens ED, Devlin RH (2000) Intestinal morphology in growth hormone transgenic coho salmon. J Fish Biol 56:191–195

    Article  Google Scholar 

  • Suzer C, Çoban D, Kamaci HO, Saka Ş, Firat K, Otgucuoğlu Ö, Küçüksari H (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280:140–145

    Article  CAS  Google Scholar 

  • Van Ham EH, Berntssen MHG, Imsland AK, Parpoura AC, Wenderlaar BSE, Stefansson SO (2003) The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot (Scophthalmus maximus). Aquaculture 217:547–558

    Article  Google Scholar 

  • Villanueva J, Vanacore R, Goicoechea O, Amthauer R (1997) Intestinal alkaline phosphatase of the fish Cyprinus carpio: regional distribution and membrane association. J Exp Zool A 279:347–355

    Article  CAS  Google Scholar 

  • Volkoff H, Eykelbosh AJ, Peter RE (2003) Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting. Brain Res 972:90–109

    Article  CAS  PubMed  Google Scholar 

  • Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142:3–19

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Hemmer W (1994) Creatine-kinase in nonmuscle tissues and cells. Mol Cell Biochem 133:193–220

    Article  PubMed  Google Scholar 

  • Wang N, Hayward RS, Noltie DB (1998) Effect of feeding frequency on food consumption, growth, size variation, and feeding pattern of age-0 hybrid sunfish. Aquaculture 165:261–267

    Article  Google Scholar 

  • Wen ZP, Zhou XQ, Feng L, Jiang J, Liu Y (2009) Effect of dietary pantothenic acid supplement on growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr 15:470–476

    Article  CAS  Google Scholar 

  • Weng CF, Chiang CC, Gong HY, Chen MHC, Lin CJF, Huang WT, Cheng CY, Huang PP, Wu L (2002) Acute changes in gill Na+, K+-ATPase and creatine kinase in response to salinity changes in the euryhaline teleost, tilapia (Oreochromis mossambicus). Physiol Biochem Zool 75:29–36

    Article  CAS  PubMed  Google Scholar 

  • Worthington V, Worthington BC (1993) Worthington enzyme manual: enzymes and related biochemicals. Worthington Biochemical Corporation, Freehold

    Google Scholar 

  • Wu P, Feng L, Kuang SY, Liu Y, Jiang J, Hu K, Jiang WD, Li SH, Zhou XQ (2011) Effect of dietary choline on growth, intestinal enzyme activities and relative expressions of target of rapamycin and eIF4E-binding protein 2 gene in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 317:107–116

    Article  CAS  Google Scholar 

  • Wu Y, Liu WB, Li HY, Xu WN, He JX, Li XF, Jiang GZ (2013) Effects of dietary supplementation of fructooligosaccharide on growth performance, body composition, intestinal enzymes activities and histology of blunt snout bream (Megalobrama amblycephala) fingerlings. Aquac Nutr 19:886–894

    Article  CAS  Google Scholar 

  • Zhang J, Wei XL, Chen LP, Chen N, Li YH, Wang WM, Wang HL (2013) Sequence analysis and expression differentiation of chemokine receptor CXCR4b among three populations of Megalobrama amblycephala. Dev Comp Immunol 40:195–201

    Article  PubMed  Google Scholar 

  • Zhong H, Zhou Y, Liu SJ, Tao M, Long Y, Liu Z, Zhang C, Duan W, Hu J, Song C, Liu Y (2012) Elevated expressions of GH/IGF axis genes in triploid crucian carp. Gen Comp Endocrinol 178:291–300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Technology System for Conventional Freshwater Fish Industries of China (CARS-46-20) and the Nutrient Requirements Evaluation and Formulated Feed Development for Aquatic Species Mainly Cultured in China (201003020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Li, XF., Tian, HY. et al. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala . Fish Physiol Biochem 42, 689–700 (2016). https://doi.org/10.1007/s10695-015-0169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0169-z

Keywords

Navigation